skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Nano-Scale Modified BaTiO3 Morphology Influence on Electronic Properties and Ceramics Fractal Nature Frontiers
The BaTiO3 ceramics applications based on electronic properties have very high gradient scientific and industrial-technological interests. Our scientific research has been based on nano BaTiO3 modified with Yttrium based organometallic salt (MOD-Y). The samples have been consolidated at a sintering temperature of 1350 °C. Within the study, the new frontiers for different electronic properties between the layers of BaTiO3 grains have been introduced. The research target was grain boundary investigations and the influence on dielectric properties. After scanning electron microscopy and dielectric measurements, it has been established that modified BaTiO3 samples with larger grains showed a better compact state that led to a higher dielectric constant value. DC bias stability was also investigated and showed a connection between the grain size and capacitance stability. Analyses of functions that could approximate experimental curves were successfully employed. Practical application of fractal corrections was performed, based on surface (αs) and pore size (αp) corrections, which resulted in obtainment of the relation between the capacitance and Curie temperature. Successful introduction of fractal corrections for capacitance-Curie temperature dependence for a set of experimental data is an important step towards further miniaturization of intergranular capacitors.  more » « less
Award ID(s):
1829245
PAR ID:
10180602
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Applied Sciences
Volume:
10
Issue:
10
ISSN:
2076-3417
Page Range / eLocation ID:
3485
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In many commercially utilized ferroelectric materials, the motion of domain walls is an important contributor to the functional dielectric and piezoelectric responses. This paper compares the temperature dependence of domain wall motion for BaTiO3 ceramics with different grain sizes, point defect concentrations, and formulations. The grain boundaries act as significant pinning points for domain wall motion such that fine-grained materials show smaller extrinsic contributions to the properties below the Curie temperature and lower residual ferroelectric contributions immediately above the Curie temperature. Oxygen vacancy point defects make a modest change in the extrinsic contributions of undoped BaTiO3 ceramics. In formulated BaTiO3, extrinsic contributions to the dielectric response were suppressed over a wide temperature range. It is believed this is due to a combination of reduced grain size, the existence of a core-shell microstructure, and a reduction in domain wall continuity over the grain boundaries. 
    more » « less
  2. BaTiO 3 (BTO) is considered the most commonly used ceramic material in multilayer ceramic capacitors due to its desirable dielectric properties. Considering that the miniaturization of electronic devices represents an expanding field of research, modification of BTO has been performed to increase dielectric constant and DC bias characteristic/sensitivity. This research presents the effect of N 2 and air atmospheres on morphological and dielectric properties of BTO nanoparticles modified with organometallic salt at sintering temperatures of [Formula: see text]C, [Formula: see text]C, [Formula: see text]C, and [Formula: see text]C. Measured dielectric constants were up to 35,000, with achieved very high values in both atmospheres. Field emission scanning electron microscopy (FESEM) was used for morphological characterization, revealing a porous structure in all the samples. The software image analysis of FESEM images showed a connection between particle and pore size distribution, as well as porosity. Based on the data from the image analysis, the prediction of dielectric properties in relation to morphology indicated that yttrium-based organometallic salt reduced oxygen vacancy generation in N 2 atmosphere. DC bias sensitivity measurements showed that samples with higher dielectric constant had more pronounced sensitivity to voltage change, but most of the samples were stable up to 100 V, making our modified BTO a promising candidate for capacitors. 
    more » « less
  3. Ferroelectric materials such as barium titanate (BaTiO3) have a wide range of applications in nano scale electronic devices due to their outstanding properties. In this study, we developed an easily extendable atomistic ReaxFF reactive force field for BaTiO3 that can capture both its field- as well as temperature-induced ferroelectric hysteresis and corresponding changes due to surface chemistry and bulk defects. Using our force field, we were able to reproduce and explain a number of experimental observations: (1) existence of a critical thickness of 4.8 nm below which ferroelectricity vanishes in BaTiO3; (2) migration and clustering of oxygen vacancies (OVs) in BaTiO3 and reduction in the polarization and the curie temperature due to the OVs; (3) domain wall interaction with surface chemistry to influence ferroelectric switching and polarization magnitude. This new computational tool opens up a wide range of possibilities for making predictions for realistic ferroelectric interfaces in energy-conversion, electronic and neuromorphic systems. 
    more » « less
  4. Paleomagnetic observations provide valuable evidence of the strength of magnetic fields present during evolution of the Solar System. Such information provides important constraints on physical processes responsible for rapid accretion of the protoplanetesimal disk. For this purpose, magnetic recordings must be stable and resist magnetic overprints from thermal events and viscous acquisition over many billions of years. A lack of comprehensive understanding of magnetic domain structures carrying remanence has, until now, prevented accurate estimates of the uncertainty of recording fidelity in almost all paleomagnetic samples. Recent computational advances allow detailed analysis of magnetic domain structures in iron particles as a function of grain morphology, size, and temperature. Our results show that uniformly magnetized equidimensional iron particles do not provide stable recordings, but instead larger grains containing single-vortex domain structures have very large remanences and high thermal stability—both increasing rapidly with grain size. We derive curves relating magnetic thermal and temporal stability demonstrating that cubes (>35 nm) and spheres (>55 nm) are likely capable of preserving magnetic recordings from the formation of the Solar System. Additionally, we model paleomagnetic demagnetization curves for a variety of grain size distributions and find that unless a sample is dominated by grains at the superparamagnetic size boundary, the majority of remanence will block at high temperatures ( ∼ 100   ° C of Curie point). We conclude that iron and kamacite (low Ni content FeNi) particles are almost ideal natural recorders, assuming that there is no chemical or magnetic alteration during sampling, storage, or laboratory measurement. 
    more » « less
  5. Abstract We report on the tunable and enhanced dielectric properties of tungsten (W) incorporated gallium oxide (Ga2O3) polycrystalline electroceramics for energy and power electronic device applications. The W‐incorporated Ga2O3(Ga2−2xWxO3, 0.00 ≤ x ≤ 0.20; GWO) compounds were synthesized by the high‐temperature solid‐state chemical reaction method by varying the W‐content. The fundamental aspects of the dielectric properties in correlation with the crystal structure, phase, and microstructure of the GWO polycrystalline compounds has been investigated in detail. A detailed study performed ascertains the W‐induced changes in the dielectric constant, loss tangent (tanδ) and ac conductivity. It was found that the dielectric constant increases with addition of W in the system as a function of temperature (25°C‐500°C). Frequency dependence (102‐106 Hz) of the dielectric constant follows the modified Debye model with a relaxation time of ∼20 to 90 μs and a spreading factor of 0.39 to 0.65. The dielectric constant of GWO is temperature independent almost until ∼300°C, and then increases rapidly in the range of 300°C to 500°C. W‐induced enhancement in the dielectric constant of GWO is fully evident in the frequency and temperature dependent dielectric studies. The frequency and temperature dependent tanδreveals the typical behavior of relaxation loses in GWO. Small polaron hopping mechanism is evident in the frequency dependent electrical transport properties of GWO. The remarkable effect of W‐incorporation on the dielectric and electrical transport properties of Ga2O3is explained by a two‐layer heterogeneous model consisting of thick grains separated by very thin grain boundaries along with the formation of a Ga2O3‐WO3composite was able to account for the observed temperature and frequency dependent electrical properties in GWO. The results demonstrate that the structure, electrical and dielectric properties can be tailored by tuning W‐content in the GWO compounds. 
    more » « less