skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Uncertainty in Boundary Conditions---An Interval Finite Element Approach
In this work, we introduce an interval formulation that accounts for uncertainty in supporting conditions of structural systems. Uncertainty in structural systems has been the focus of a wide range of research. Different models of uncertain parameters have been used. Conventional treatment of uncertainty involves probability theory, in which uncertain parameters are modeled as random variables. Due to specific limitation of probabilistic approaches, such as the need of a prior knowledge on the distributions, lack of complete information, and in addition to their intensive computational cost, the rationale behind their results is under debate. Alternative approaches such as fuzzy sets, evidence theory, and intervals have been developed. In this work, it is assumed that only bounds on uncertain parameters are available and intervals are used to model uncertainty. Here, we present a new approach to treat uncertainty in supporting conditions. Within the context of Interval Finite Element Method (IFEM), all uncertain parameters are modeled as intervals. However, supporting conditions are considered in idealized types and described by deterministic values without accounting for any form of uncertainty. In the current developed approach, uncertainty in supporting conditions is modeled as bounded range of values, i.e., interval value that capture any possible variation in supporting condition within a given interval. Extreme interval bounds can be obtained by analyzing the considered system under the conditions of the presence and absence of the specific supporting condition. A set of numerical examples is presented to illustrate and verify the accuracy of the proposed approach.  more » « less
Award ID(s):
1634483
PAR ID:
10181188
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Decision Making under Constraints
Page Range / eLocation ID:
157--167
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose an interval extension of Signal Temporal Logic (STL) called Interval Signal Temporal Logic (I-STL). Given an STL formula, we consider an interval inclusion function for each of its predicates. Then, we use minimal inclusion functions for the min and max functions to recursively build an interval robustness that is a natural inclusion function for the robustness of the original STL formula. The resulting interval semantics accommodate, for example, uncertain signals modeled as a signal of intervals and uncertain predicates modeled with appropriate inclusion functions. In many cases, verification or synthesis algorithms developed for STL apply to I-STL with minimal theoretic and algorithmic changes, and existing code can be readily extended using interval arithmetic packages at negligible computational expense. To demonstrate I-STL, we present an example of offline monitoring from an uncertain signal trace obtained from a hardware experiment and an example of robust online control synthesis enforcing an STL formula with uncertain predicates. 
    more » « less
  2. Risk prediction models are crucial for assessing the pretest probability of cancer and are applied to stratify patient management strategies. These models are frequently based on multivariate regression analysis, requiring that all risk factors be specified, and do not convey the confidence in their predictions. We present a framework for uncertainty analysis that accounts for variability in input values. Uncertain or missing values are replaced with a range of plausible values. These ranges are used to compute individualized risk confidence intervals. We demonstrate our approach using the Gail model to evaluate the impact of uncertainty on management decisions. Up to 13% of cases (uncertain) had a risk interval that falls within the decision threshold (e.g., 1.67% 5-year absolute risk). A small number of cases changed from low- to high-risk when missing values were present. Our analysis underscores the need for better communication of input assumptions that influence the resulting predictions. 
    more » « less
  3. Uncertainty in safety-critical cyber-physical systems can be modeled using a finite number of parameters or parameterized input signals. Given a system specification in Signal Temporal Logic (STL), we would like to verify that for all (infinite) values of the model parameters/input signals, the system satisfies its specification. Unfortunately, this problem is undecidable in general.Statistical model checking(SMC) offers a solution by providing guarantees on the correctness of CPS models by statistically reasoning on model simulations. We propose a new approach for statistical verification of CPS models for user-provided distribution on the model parameters. Our technique uses model simulations to learnsurrogate models, and usesconformal inferenceto provide probabilistic guarantees on the satisfaction of a given STL property. Additionally, we can provide prediction intervals containing the quantitative satisfaction values of the given STL property for any user-specified confidence level. We compare this prediction interval with the interval we get using risk estimation procedures. We also propose a refinement procedure based on Gaussian Process (GP)-based surrogate models for obtaining fine-grained probabilistic guarantees over sub-regions in the parameter space. This in turn enables the CPS designer to choose assured validity domains in the parameter space for safety-critical applications. Finally, we demonstrate the efficacy of our technique on several CPS models. 
    more » « less
  4. Appeared in the proceedings of the 2021 IFAC Workshop on Time-Delay Systems This paper establishes a PIE (Partial Integral Equation)-based technique for the robust stability and H∞ performance analysis of linear systems with interval delays. The delays considered are time-invariant but uncertain, residing within a bounded interval excluding zero. We first propose a structured class of PIE systems with parametric uncertainty, then propose a Linear PI Inequality (LPI) for robust stability and H∞ performance of PIEs with polytopic uncertainty. Next, we consider the problem of robust stability and H∞ performance of multidelay systems with interval uncertainty in the delay parameters and show this problem is equivalent to robust stability and performance of a given PIE with parametric uncertainty. The robust stability and H∞ performance of the uncertain time-delay system are then solved using the LPI solver in the MATLAB PIETOOLS toolbox. Numerical examples are given to prove the effectiveness and accuracy of the method. This paper adds to the expanding field of PIE approach and can be extended to linear partial differential equations. 
    more » « less
  5. null (Ed.)
    We investigate a data-driven approach to constructing uncertainty sets for robust optimization problems, where the uncertain problem parameters are modeled as random variables whose joint probability distribution is not known. Relying only on independent samples drawn from this distribution, we provide a nonparametric method to estimate uncertainty sets whose probability mass is guaranteed to approximate a given target mass within a given tolerance with high confidence. The nonparametric estimators that we consider are also shown to obey distribution-free finite-sample performance bounds that imply their convergence in probability to the given target mass. In addition to being efficient to compute, the proposed estimators result in uncertainty sets that yield computationally tractable robust optimization problems for a large family of constraint functions. 
    more » « less