In an effort to deepen learning in K-12 science classrooms, there has been a national movement to integrate computational thinking (CT). The purpose of this phenomenographic study was to understand teachers’ perceptions of the function and usefulness of a task analysis and a decision tree tool designed to help them with integration. Teachers participated in a long-term professional development to improve their knowledge and application of CT and then developed lesson plans integrating CT into science investigations. To assist in the integration, teachers used the two unique tools. No one lesson plan or content area addressed all of the CT practices, but all CT practices were addressed in lessons across all four science areas. All 19 teachers found that the task analysis tool helped them to shift their lessons to a student-centered focus and helped them pinpoint data practices so they could systematically integrate CT practices. However, they expressed confusion over the amount of detail to document on the tool. Similarly, teachers found both benefits and barriers to the decision tree tool. Teachers found the decision tree tool to be useful in predicting the ways students may misunderstand a data practice and in reflecting on the level of accomplishment of students. However, teachers were sometimes uncertain with how to efficiently document complex student behaviors when engaged with data practices and CT. Implications for the use of the two lesson planning tools is discussed.
more »
« less
Computational Tinkering in Science: Designing Space for Computational Participation in High School Biology
Computational tools are being integrated into science classrooms, but in ways that are often procedurally prescribed, constraining learner agency and ignoring student purposes and epistemic practices. We draw on theory and approaches from making-oriented education to introduce computational tinkering in science as a construct for thinking about and designing for learning with computational tools. Across two design research cycles in high school science classrooms, we analyze episodes of student activity to understand how practices of computational tinkering might translate from informal settings to formal science classrooms to enable learners to engage in practices that reflect authentic scientific work, draw upon learner experiences, and support more equitable participation in science. Looking across both student-centered and curricula-centered science classrooms for emergent goals, rapid iteration, and noticing and reflection, we saw computational tinkering take shape during moments of play, troubleshooting and tuning, and sharing. We discuss findings and implications for practice in relation to professional science practice and goals of science education in an era of computational ascendancy.
more »
« less
- Award ID(s):
- 1640054
- PAR ID:
- 10181446
- Date Published:
- Journal Name:
- The Interdisciplinarity of the Learning Sciences, 14th International Conference of the Learning Sciences (ICLS) 2020
- Volume:
- 1
- Page Range / eLocation ID:
- 154-161
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Kong, S.C. (Ed.)This work aims to help high school STEM teachers integrate computational thinking (CT) into their classrooms by engaging teachers as curriculum co-designers. K-12 teachers who are not trained in computer science may not see the value of CT in STEM classrooms and how to engage their students in computational practices that reflect the practices of STEM professionals. To this end, we developed a 4-week professional development workshop for eight science and mathematics high school teachers to co-design computationally enhanced curriculum with our team of researchers. The workshop first provided an introduction to computational practices and tools for STEM education. Then, teachers engaged in co-design to enhance their science and mathematics curricula with computational practices in STEM. Data from surveys and interviews showed that teachers learned about computational thinking, computational tools, coding, and the value of collaboration after the professional development. Further, they were able to integrate multiple computational tools that engage their students in CT-STEM practices. These findings suggest that teachers can learn to use computational practices and tools through workshops, and that teachers collaborating with researchers in co-design to develop computational enhanced STEM curriculum may be a powerful way to engage students and teachers with CT in K-12 classrooms.more » « less
-
The lack of a definition of the T in STEM (science, technology, engineering, and mathematics) acronym is pervasive, and it is often the teachers of STEM disciplines who inherit the task of defining the role of technology within their K-12 classrooms. These definitions often vary significantly, and they have profound implications for curricular and instructional goals within science and STEM classrooms. This theoretical paper summarizes of technology initiatives across science and STEM education from the past 30 years to present perspectives on the role of technology in science-focused STEM education. The most prominent perspectives describe technology as the following: (a) vocational education, industrial arts, or the product of engineering, (b) educational or instructional technology, (c) computing or computational thinking, and (d) the tools and practices used by practitioners of science, mathematics, and engineering. We have identified the fourth perspective as the most salient with respect to K-12 science and STEM education. This particular perspective is in many ways compatible with the other three perspectives, but this depends heavily on the beliefs, prior experiences, and instructional goals of teachers who use technology in their science or STEM classroom.more » « less
-
Abstract Contemporary science is a field that is becoming increasingly computational. Today’s scientists not only leverage computational tools to conduct their investigations, they often must contribute to the design of the computational tools for their specific research. From a science education perspective, for students to learn authentic science practices, students must learn to use the tools of the trade. This necessity in science education has shaped recent K–12 science standards including the Next Generation Science Standards, which explicitly mention the use of computational tools and simulations. These standards, in particular, have gone further and mandated thatcomputational thinkingbe taught and leveraged as a practice of science. While computational thinking is not a new term, its inclusion in K–12 science standards has led to confusion about what the term means in the context of science learning and to questions about how to differentiate computational thinking from other commonly taught cognitive skills in science like problem-solving, mathematical reasoning, and critical thinking. In this paper, we propose a definition ofcomputational thinking for science(CT-S) and a framework for its operationalization in K–12 science education. We situate our definition and framework in Activity Theory, from the learning sciences, in order to position computational thinking as an input to and outcome of science learning that is mediated by computational tools.more » « less
-
There is consensus that computational modeling can support integration of science with computing for student learning. However, it can be challenging for teachers to gain comfort with this relatively new practice, reconcile how it relates to science, and recognize its pedagogical value. In this paper, we illustrate how teachers working with a (serendipitous) analogy between a familiar process and a topic covered in chemistry class–frogs catching flies and reaction rates–enabled them to take up computational modeling in their science teaching. Drawing on notes from co-design sessions, teacher interviews and student worksheets, we illustrate how a focal teacher shifted from initial reluctance to taking ownership of designing and teaching a computational modeling lesson sequence. We also briefly show how her students took up this work. Finally, we reflect on the importance of leveraging teachers’ existing domain and pedagogical expertise as we bring these new practices into their classrooms.more » « less
An official website of the United States government

