skip to main content

Title: Deterministic and Randomized Actuator Scheduling With Guaranteed Performance Bounds
In this paper, we investigate the problem of actuator selection for linear dynamical systems. We develop a framework to design a sparse actuator schedule for a given large-scale linear system with guaranteed performance bounds using deterministic polynomial-time and randomized approximately linear-time algorithms. First, we introduce systemic controllability metrics for linear dynamical systems that are monotone and homogeneous with respect to the controllability Gramian. We show that several popular and widely used optimization criteria in the literature belong to this class of controllability metrics. Our main result is to provide a polynomial-time actuator schedule that on average selects only a constant number of actuators at each time step, independent of the dimension, to furnish a guaranteed approximation of the controllability metrics in comparison to when all actuators are in use. Our results naturally apply to the dual problem of sensor selection, in which we provide a guaranteed approximation to the observability Gramian. We illustrate the effectiveness of our theoretical findings via several numerical simulations using benchmark examples.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE Transactions on Automatic Control
Page Range / eLocation ID:
1 to 1
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we consider the problem of sensor selection for discrete-time linear dynamical networks. We develop a framework to design a sparse sensor schedule for a given large-scale linear system with guaranteed performance bounds using a learning-based algorithm. To sparsify the sensors in both time and space, we build our combinatorial optimization problems based on the notion of systemic controllability/observability metrics for linear dynamical networks with three properties: monotonicity, convexity, and homogeneity with respect to the controllability/observability Gramian matrix of the network. These combinatorial optimizations are inherently intractable and NP-hard. However, solving a continuous relaxation for each optimization is considered best practice. This is achievable since we constructed the objective based on the systemic metrics, which are convex. Furthermore, by leveraging recent advances in sparsification literature and regret minimization, we then round the fractional solution obtained by the continuous optimization to achieve a (1+epsilon) approximation sparse schedule that chooses on average a constant number of sensors at each time, to approximate all types of systemic metrics. 
    more » « less
  2. null (Ed.)
    Abstract Recent advances in network science, control theory, and fractional calculus provide us with mathematical tools necessary for modeling and controlling complex dynamical networks (CDNs) that exhibit long-term memory. Selecting the minimum number of driven nodes such that the network is steered to a prescribed state is a key problem to guarantee that complex networks have a desirable behavior. Therefore, in this paper, we study the effects of long-term memory and of the topological properties on the minimum number of driven nodes and the required control energy. To this end, we introduce Gramian-based methods for optimal driven node selection for complex dynamical networks with long-term memory and by leveraging the structure of the cost function, we design a greedy algorithm to obtain near-optimal approximations in a computationally efficiently manner. We investigate how the memory and topological properties influence the control effort by considering Erdős–Rényi, Barabási–Albert and Watts–Strogatz networks whose temporal dynamics follow a fractional order state equation. We provide evidence that scale-free and small-world networks are easier to control in terms of both the number of required actuators and the average control energy. Additionally, we show how our method could be applied to control complex networks originating from the human brain and we discover that certain brain cortex regions have a stronger impact on the controllability of network than others. 
    more » « less
  3. Several problems in modeling and control of stochastically-driven dynamical systems can be cast as regularized semi-definite programs. We examine two such representative problems and show that they can be formulated in a similar manner. The first, in statistical modeling, seeks to reconcile observed statistics by suitably and minimally perturbing prior dynamics. The second seeks to optimally select a subset of available sensors and actuators for control purposes. To address modeling and control of large-scale systems we develop a unified algorithmic framework using proximal methods. Our customized algorithms exploit problem structure and allow handling statistical modeling, as well as sensor and actuator selection, for substantially larger scales than what is amenable to current general-purpose solvers. We establish linear convergence of the proximal gradient algorithm, draw contrast between the proposed proximal algorithms and alternating direction method of multipliers, and provide examples that illustrate the merits and effectiveness of our framework. 
    more » « less
  4. Selecting appropriate inputs for systems described by complex networks is an important but difficult problem that largely remains open in the field of control of networks. Recent work has proposed two methods for energy efficient input selection; a gradient-based heuristic and a greedy approximation algorithm. We propose here an alternative method for input selection based on the analytic solution of the controllability Gramian of the ‘balloon graph’, a special model graph that captures the role of both distance and redundant paths between a driver node and a target node. The method presented is especially applicable for large networks where one is interested in controlling only a small number of outputs, or target nodes, for which current methods may not be practical because they require computing a typically very ill-conditioned matrix, called the controllability Gramian. Our method produces comparable results to the previous methods while being more computational efficient. 
    more » « less
  5. Given a linear dynamical system, we consider the problem of selecting (at design-time) an optimal set of sensors (subject to certain budget constraints) to minimize the trace of the steady state error covariance matrix of the Kalman filter. Previous work has shown that this problem is NP-hard for certain classes of systems and sensor costs; in this paper, we show that the problem remains NP-hard even for the special case where the system is stable and all sensor costs are identical. Furthermore, we show the stronger result that there is no constant-factor (polynomial-time) approximation algorithm for this problem. This contrasts with other classes of sensor selection problems studied in the literature, which typically pursue constant-factor approximations by leveraging greedy algorithms and submodularity of the cost function. Here, we provide a specific example showing that greedy algorithms can perform arbitrarily poorly for the problem of design-time sensor selection for Kalman filtering. 
    more » « less