skip to main content


Title: Thermoelectric Properties of Semiconducting Polymers
Semiconducting polymers have the potential to be used in thermoelectric devices that are lightweight, flexible, and fabricated using solution processing. Because of the structural and energetic disorder of these polymers, the relationship between their structure and thermoelectric properties is complex. We review how interrelated processing routes and doping methods affect the thermoelectric properties of polymers. The studies highlighted here have led to correlations between thermopower and electrical conductivity that can be described by theories under investigation. With greater understanding of the materials properties behind their performance, semiconducting polymers can be used in future power generation or cooling devices.  more » « less
Award ID(s):
1808622
NSF-PAR ID:
10182141
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Annual Review of Materials Research
Volume:
50
Issue:
1
ISSN:
1531-7331
Page Range / eLocation ID:
551 to 574
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In the broader polymer field, the term ‘crystallinity’ is often used rather loosely. However, increasingly, it becomes critical to clearly distinguish between degree of crystallinity, which provides the fractional amount of crystalline phase in a polymer, and the crystalline quality, which describes the perfection of the crystalline moieties that may form in a polymer. The reason is that these different structural features dictate important properties of plastic materials, including the mechanical properties of commodity polymers and the behavior of macromolecular ferroelectrics; they also determine which photophysical processes occur in semiconducting polymers. Hence, rigor needs to be applied when establishing structure/processing/property interrelations; and it should become a general practice that specific functions are clearly attributed to the degree of crystallinity, the crystalline quality or a combination of the two. In this perspective,in memoriamof Professor Dick Jones, a long‐time member of IUPAC's Polymer Division, we discuss the challenges of identifying—and distinguishing between—these important structural characteristics when using commonly applied measuring techniques and/or theoretical approaches. This task is often elaborate, as small changes in the chemical nature of the polymer and/or processing conditions selected can have drastic effects on both the crystalline quality and the degree of crystallinity, an issue that combined with the general ambiguity of data obtained with methodologies used to characterize polymer structures, theoretically or experimentally based. © 2023 The Authors.Polymer Internationalpublished by John Wiley & Sons Ltd on behalf of Society of Industrial Chemistry.

     
    more » « less
  2. Abstract

    Crosslinking is a ubiquitous strategy in polymer engineering to increase the thermomechanical robustness of solid polymers but has been relatively unexplored in the context of π‐conjugated (semiconducting) polymers. Notwithstanding, mechanical stability is key to many envisioned applications of organic electronic devices. For example, the wide‐scale distribution of photovoltaic devices incorporating conjugated polymers may depend on integration with substrates subject to mechanical insult—for example, road surfaces, flooring tiles, and vehicle paint. Here, a four‐armed azide‐based crosslinker (“4Bx”) is used to modify the mechanical properties of a library of semiconducting polymers. Three polymers used in bulk heterojunction solar cells (donors J51 and PTB7‐Th, and acceptor N2200) are selected for detailed investigation. In doing so, it is shown that low loadings of 4Bx can be used to increase the strength (up to 30%), toughness (up to 75%), hardness (up to 25%), and cohesion of crosslinked films. Likewise, crosslinked films show greater physical stability in comparison to non‐crosslinked counterparts (20% vs 90% volume lost after sonication). Finally, the locked‐in morphologies and increased mechanical robustness enable crosslinked solar cells to have greater survivability to four degradation tests: abrasion (using a sponge), direct exposure to chloroform, thermal aging, and accelerated degradation (heat, moisture, and oxygen).

     
    more » « less
  3. null (Ed.)
    N-type semiconducting polymers have been recently utilized in thermoelectric devices, however they have typically exhibited low electrical conductivities and poor device stability, in contrast to p-type semiconductors, which have been much higher performing. This is due in particular to the n-type semiconductor's low doping efficiency, and poor charge carrier mobility. Strategies to enhance the thermoelectric performance of n-type materials include optimizing the electron affinity (EA) with respect to the dopant to improve the doping process and increasing the charge carrier mobility through enhanced molecular packing. Here, we report the design, synthesis and characterization of fused electron-deficient n-type copolymers incorporating the electron withdrawing lactone unit along the backbone. The polymers were synthesized using metal-free aldol condensation conditions to explore the effect of enlarging the central phenyl ring to a naphthalene ring, on the electrical conductivity. When n-doped with N-DMBI, electrical conductivities of up to 0.28 S cm −1 , Seebeck coefficients of −75 μV K −1 and maximum Power factors of 0.16 μW m −1 K −2 were observed from the polymer with the largest electron affinity of −4.68 eV. Extending the aromatic ring reduced the electron affinity, due to reducing the density of electron withdrawing groups and subsequently the electrical conductivity reduced by almost two orders of magnitude. 
    more » « less
  4. Abstract

    The thermoelectric properties of semiconducting polymers are influenced by both the carrier concentration and the morphology that sets the pathways for charge transport. A combination of optical, morphological, and electrical characterization is used to assess the effect of the role of disorder on the thermoelectric properties of thin films of poly(3‐hexylthiophene) (P3HT) doped with 2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane (F4TCNQ). Controlled morphologies are formed by casting blends of regioregular (RR‐P3HT) and regiorandom (RRa‐P3HT) and then subsequently doped with F4TCNQ from the vapor phase. Optical spectroscopy and X‐ray scattering show that vapor phase doping induces order in the disordered regions of thin films and increases the long‐range connectivity of the film. The thermoelectric properties are assessed as a function of composition and it is shown that while the Seebeck coefficient is affected by structural ordering, the electrical conductivity and power factor are more strongly correlated with the long‐range connectivity of ordered domains.

     
    more » « less
  5. null (Ed.)
    Incorporation of polar side chains on organic semiconducting materials have been used recently in thermoelectric materials to increase dopant:semiconductor miscibility and stability to further increase the performance and durability of devices. However, investigations into how polar side chains can affect the structure and energetics of polythiophenes compared to non-polar alkyl side chains are usually carried out using materials with no common morphological structure. Within this work we systematically investigate the increase in polar side chain content on poly(3-hexylthiophene) (P3HT) and how the optical, electrochemical, and structural properties are affected. We find a decreasing degree of aggregation with increasing polar side chain content leading to lower charge carrier mobilities. Upon doping with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ), we find that the electrical conductivity is reduced when incorporating the polar side chain and no stabilising effect is demonstrated when annealing the doped thin films at raised temperatures. This study emphasises that polar functionalities do not always increase dopant:semiconductor interactions and can harm desirable structural and electrical characteristics, and therefore should be incorporated into organic semiconductors with caution. 
    more » « less