skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Convergence of an adaptive finite element DtN method for the elastic wave scattering by periodic structures
Consider the scattering of a time-harmonic elastic plane wave by a periodic rigid surface. The elastic wave propagation is governed by the two-dimensional Navier equation. Based on a Dirichlet-to-Neumann (DtN) map, a transparent boundary condition (TBC) is introduced to reduce the scattering problem into a boundary value problem in a bounded domain. By using the finite element method, the discrete problem is considered, where the TBC is replaced by the truncated DtN map. A new duality argument is developed to derive the a posteriori error estimate, which contains both the finite element approximation error and the DtN truncation error. An a posteriori error estimate based adaptive finite element algorithm is developed to solve the elastic surface scattering problem. Numerical experiments are presented to demonstrate the effectiveness of the proposed method.  more » « less
Award ID(s):
1912704
PAR ID:
10182371
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Computer methods in applied mechanics and engineering
Volume:
360
ISSN:
1879-2138
Page Range / eLocation ID:
112722
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract We present residual-based a posteriori error estimates of mixed finite element methods for the three-field formulation of Biot’s consolidation model. The error estimator are upper and lower bounds of the space-time discretization error up to data oscillation. As a by-product, we also obtain a new a posteriori error estimate of mixed finite element methods for the heat equation. 
    more » « less
  2. A nonlinear least-squares finite element method for strong solutions of the Dirichlet boundary value problem of a two-dimensional Pucci equation on convex polygonal domains is investigated in this paper. We obtain a priori and a posteriori error estimates and present corroborating numerical results, where the discrete nonsmooth and nonlinear optimization problems are solved by an active set method and an alternating direction method with multipliers. 
    more » « less
  3. Consider the elastic scattering of a time-harmonic wave by multiple well-separated rigid particles with smooth boundaries in two dimensions. Instead of using the complex Green's tensor of the elastic wave equation, we utilize the Helmholtz decomposition to convert the boundary value problem of the elastic wave equation into a coupled boundary value problem of the Helmholtz equation. Based on single, double, and combined layer potentials with the simpler Green's function of the Helmholtz equation, we present three different boundary integral equations for the coupled boundary value problem. The well-posedness of the new integral equations is established. Computationally, a scattering matrix based method is proposed to evaluate the elastic wave for arbitrarily shaped particles. The method uses the local expansion for the incident wave and the multipole expansion for the scattered wave. The linear system of algebraic equations is solved by GMRES with fast multipole method (FMM) acceleration. Numerical results show that the method is fast and highly accurate for solving elastic scattering problems with multiple particles. 
    more » « less
  4. We design and analyze a C0 interior penalty method for the approximation of classical solutions of the Dirichlet boundary value problem of the Monge–Ampère equation on convex polygonal domains. The method is based on an enhanced cubic Lagrange finite element that enables the enforcement of the convexity of the approximate solutions. Numerical results that corroborate the a priori and a posteriori error estimates are presented. It is also observed from numerical experiments that this method can capture certain weak solutions. 
    more » « less
  5. null (Ed.)
    Abstract We design and analyze a $$C^0$$ C 0 interior penalty method for the approximation of classical solutions of the Dirichlet boundary value problem of the Monge–Ampère equation on convex polygonal domains. The method is based on an enhanced cubic Lagrange finite element that enables the enforcement of the convexity of the approximate solutions. Numerical results that corroborate the a priori and a posteriori error estimates are presented. It is also observed from numerical experiments that this method can capture certain weak solutions. 
    more » « less