skip to main content


Title: Change in student understanding of modeling during first-year engineering courses
All engineers must be able to apply and create models to be effective problem solvers, critical thinkers, and innovative designers. To be more successful in their studies and careers, students need a foundational knowledge about models. An adaptable approach can help students develop their modeling skills across a variety of modeling types, including physical models, mathematical models, logical models, and computational models. Physical models (e.g., prototypes) are the most common type of models that engineering students identify and discuss during the design process. There is a need to explicitly focus on varying types of models, model application, and model development in the engineering curriculum, especially on mathematical and computational models. This NSF project proposes two approaches to creating a holistic modeling environment for learning at two universities. These universities require different levels of revision to the existing first-year engineering courses or programs. The proposed approaches change to a unified language and discussion around modeling with the intent of contextualizing modeling as a fundamental tool within engineering. To evaluate student learning on modeling in engineering, we conducted pre and post surveys across three different first-year engineering courses at these two universities with different student demographics. The comparison between the pre and post surveys highlighted student learning on engineering modeling based on different teaching and curriculum change approaches.  more » « less
Award ID(s):
1827392
NSF-PAR ID:
10182820
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ASEE Annual Conference proceedings
ISSN:
1524-4644
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Background To succeed in engineering careers, students must be able to create and apply models to certain problems. The different types of models include physical, mathematical, computational, graphical, and financial, which are used both in academics, research, and industry. However, many students struggle to define, create, and apply relevant models in their engineering courses. Purpose (Research Questions) The research questions investigated in this study are: (1) What types of models do engineering students identify before and after completing a first-year engineering course? (2) How do students’ responses compare across different courses (a graphical communications course - EGR 120 and a programming course - EGR 115), and sections? Design/Methods The data used for this study were collected in two introductory first-year engineering courses offered during Fall 2019, EGR 115 and EGR 120. Students’ responses to a survey about modeling were qualitatively analyzed. The survey was given at the beginning and the end of the courses. The data analyzed consisted of 560 pre and post surveys for EGR 115 and 384 pre and post surveys for EGR 120. Results Once the analysis is complete, we are hoping to find that the students can better define and apply models in their engineering courses after they have completed the EGR 115 and/or EGR 120 courses. 
    more » « less
  2. null (Ed.)
    To succeed in engineering careers, students must be able to create and apply models to certain problems. The different types of modeling skills include physical, mathematical, computational, graphing, and financial. However, many students struggle to define and form relevant models in their engineering courses. We are hoping that the students are able to better define and apply models in their engineering courses after they have completed the MATLAB and/or CATIA courses. We also are hoping to see a difference in model identification between the MATLAB and CATIA courses. All students in the MATLAB and CATIA courses must be able to understand and create models in order to solve problems and think critically in engineering. Students need foundational knowledge about basic modeling skills that will be effective in their course. The goal is for students to create an approach to help them solve problems logically and apply different modeling skills. 
    more » « less
  3. null (Ed.)
    To succeed in engineering careers, students must be able to create and apply models to certain problems. The different types of modeling skills include physical, mathematical, computational, graphing, and financial. However, many students struggle to define and form relevant models in their engineering courses. We are hoping that the students are able to better define and apply models in their engineering courses after they have completed the MATLAB and/or CATIA courses. We also are hoping to see a difference in model identification between the MATLAB and CATIA courses. All students in the MATLAB and CATIA courses must be able to understand and create models in order to solve problems and think critically in engineering. Students need foundational knowledge about basic modeling skills that will be effective in their course. The goal is for students to create an approach to help them solve problems logically and apply different modeling skills. 
    more » « less
  4. Generally, the focus of undergraduate engineering programs is on the development of technical skills and how they can be applied to design and problem solving. However, research has shown that there is also a need to expose students to business and society factors that influence design in context. This technical bias is reinforced by the available tools for use in engineering education, which are highly focused on ensuring technical feasibility, and a corresponding lack of tools for engineers to explore other design needs. One important contextual area is market systems, where design decisions are made while considering factors such as consumer choice, competitor behavior, and pricing. This study examines student learning throughout a third-year design course that emphasizes market-driven design through project-based activities and assignments, including a custom-made, interactive market simulation tool. To bridge the gap between market-driven design and engineering education research, this paper explores how students think about and internally organize design concepts before and after learning and practicing market-driven design approaches and tools in the context of an engineering design course. The central research question is: In what ways do student conceptions of product design change after introducing a market-driven design curriculum? In line with the constructivism framework of learning, it is expected that student conceptions of design should evolve to include more market considerations as they learn about and apply market-driven design concepts and techniques to their term projects. Four different types of data instruments are included in the analysis: Concept maps generated by the students before and after the course, open-ended written reflection assignments at various points in the semester, surveys administered after learning the market simulation tool and at the end of the course, and final project reports in which student teams listed their top 3-5 lessons learned in the course. Using the changes between the pre- and post-course concept maps as the primary metric to represent evolving design conceptions, data from the reflections, surveys, and reports are evaluated to assess their influence on such learning. Because market-driven design is a multi-faceted topic, a market-driven design is hierarchically decomposed into specific sub-topics for these evaluations. These include profitability (which itself encompasses pricing and costs), modeling and simulation, and market research (which encompasses consumers and competition). For each topic, correlation analyses are performed and regression models are fit to assess the significance of different factors on learning. The findings provide evidence regarding the effectiveness of the course’s market-driven design curriculum and activities on influencing student conceptions of design. 
    more » « less
  5. Generally, the focus of undergraduate engineering programs is on the development of technical skills and how they can be applied to design and problem solving. However, research has shown that there is also a need to expose students to business and society factors that influence design in context. This technical bias is reinforced by the available tools for use in engineering education, which are highly focused on ensuring technical feasibility, and a corresponding lack of tools for engineers to explore other design needs. One important contextual area is market systems, where design decisions are made while considering factors such as consumer choice, competitor behavior, and pricing. This study examines student learning throughout a third-year design course that emphasizes market-driven design through project-based activities and assignments, including a custom-made, interactive market simulation tool. To bridge the gap between market-driven design and engineering education research, this paper explores how students think about and internally organize design concepts before and after learning and practicing market-driven design approaches and tools in the context of an engineering design course. The central research question is: In what ways do student conceptions of product design change after introducing a market-driven design curriculum? In line with the constructivism framework of learning, it is expected that student conceptions of design should evolve to include more market considerations as they learn about and apply market-driven design concepts and techniques to their term projects. Four different types of data instruments are included in the analysis: Concept maps generated by the students before and after the course, open-ended written reflection assignments at various points in the semester, surveys administered after learning the market simulation tool and at the end of the course, and final project reports in which student teams listed their top 3-5 lessons learned in the course. Using the changes between the pre- and post-course concept maps as the primary metric to represent evolving design conceptions, data from the reflections, surveys, and reports are evaluated to assess their influence on such learning. Because market-driven design is a multi-faceted topic, a market-driven design is hierarchically decomposed into specific sub-topics for these evaluations. These include profitability (which itself encompasses pricing and costs), modeling and simulation, and market research (which encompasses consumers and competition). For each topic, correlation analyses are performed and regression models are fit to assess the significance of different factors on learning. The findings provide evidence regarding the effectiveness of the course’s market-driven design curriculum and activities on influencing student conceptions of design. 
    more » « less