Abstract We describe an exceptionally well-preserved vampyropod,Syllipsimopodi bidenigen. et sp. nov., from the Carboniferous (Mississippian) Bear Gulch Lagerstätte of Montana, USA. The specimen possesses a gladius and ten robust arms bearing biserial rows of suckers; it is the only known vampyropod to retain the ancestral ten-arm condition.Syllipsimopodiis the oldest definitive vampyropod and crown coleoid, pushing back the fossil record of this group by ~81.9 million years, corroborating molecular clock estimates. Using a Bayesian tip-dated phylogeny of fossil neocoleoid cephalopods, we demonstrate thatSyllipsimopodiis the earliest-diverging known vampyropod. This strongly challenges the common hypothesis that vampyropods descended from a Triassic phragmoteuthid belemnoid. As early as the Mississippian, vampyropods were evidently characterized by the loss of the chambered phragmocone and primordial rostrum—traits retained in belemnoids and many extant decabrachians. A pair of arms may have been elongated, which when combined with the long gladius and terminal fins, indicates that the morphology of the earliest vampyropods superficially resembled extant squids.
more »
« less
Tanyrhinichthys mcallisteri, a long-rostrumed Pennsylvanian ray-finned fish (Actinopterygii) and the simultaneous appearance of novel ecomorphologies in Late Palaeozoic fishes
Abstract The Carboniferous radiation of fishes was marked by the convergent appearance of then-novel but now common ecomorphologies resulting from changes in the relative proportions of traits, including elongation of the front of the skull (rostrum). The earliest ray-finned fishes (Actinopterygii) with elongate rostra are poorly known, obscuring the earliest appearances of a now widespread feature in actinopterygians. We redescribe Tanyrhinichthys mcallisteri, a long-rostrumed actinopterygian from the Upper Pennsylvanian (Missourian) of the Kinney Brick Quarry, New Mexico. Tanyrhinichthys has a lengthened rostrum bearing a sensory canal, ventrally inserted paired fins, posteriorly placed median fins unequal in size and shape, and a heterocercal caudal fin. Tanyrhinichthys shares these features with sturgeons, but lacks chondrostean synapomorphies, indicating convergence on a bottom-feeding lifestyle. Elongate rostra evolved independently in two lineages of bottom-dwelling, freshwater actinopterygians in the Late Pennsylvanian of Euramerica, as well as in at least one North American chondrichthyan (Bandringa rayi). The near-simultaneous appearance of novel ecomorphologies among multiple, distantly related lineages of actinopterygians and chondrichthyans was common during the Carboniferous radiation of fishes. This may reflect global shifts in marine and freshwater ecosystems and environments during the Carboniferous favouring such ecomorphologies, or it may have been contingent on the plasticity of early actinopterygians and chondrichthyans.
more »
« less
- Award ID(s):
- 1846777
- PAR ID:
- 10183356
- Date Published:
- Journal Name:
- Zoological Journal of the Linnean Society
- ISSN:
- 0024-4082
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A complex brain is central to the success of backboned animals. However, direct evidence bearing on vertebrate brain evolution comes almost exclusively from extant species, leaving substantial knowledge gaps. Although rare, soft-tissue preservation in fossils can yield unique insights on patterns of neuroanatomical evolution. Paleontological evidence from an exceptionally preserved Pennsylvanian (ca. 318 Ma) actinopterygian, Coccocephalus, calls into question prior interpretations of ancestral actinopterygian brain conditions. However, ordering and timing of major evolutionary innovations such as an everted telencephalon, modified meningeal tissues, and hypothalamic inferior lobes remain unclear. Here we report two distinct actinopterygian morphotypes from the latest Carboniferous-earliest Permian (~299 Ma) of Brazil that show extensive soft-tissue preservation of brains, cranial nerves, eyes and potential cardiovascular tissues. These fossils corroborate inferences drawn from Coccocephalus, while adding new information about neuroanatomical evolution. Skeletal features indicate that one of these Brazilian morphotypes is more closely related to living actinopterygians than the other, which is also reflected in soft-tissue features. Significantly, the more crownward morphotype shows a key neuroanatomical feature of extant actinopterygians–an everted telencephalon–that is absent in the other morphotype and Coccocephalus. All preserved Paleozoic actinopterygian brains show broad similarities including an invaginated cerebellum, hypothalamus inferior lobes, and a small forebrain. In each case, preserved brains are substantially smaller than the enclosing cranial chamber. The neuroanatomical similarities shared by this grade of Permo-Carboniferous actinopterygians reflect probable primitive conditions for actinopterygians, providing a revised model for interpreting brain evolution in a major branch of the vertebrate tree of life.more » « less
-
Mantis shrimp (Stomatopoda) are extant, marine, predatory arthropods, but these malacostracan pancrustaceans are also occasionally preserved in fossil assemblages, particularly in Carboniferous and Cretaceous deposits. Carboniferous species fall into two suborders—Palaeostomatopodea and Archaeostomatopodea—and represent the ancestral forms that gave rise to modern lineages. Herein, we describe hitherto unknown specimens belonging to the archaeostomatopod genus Tyrannophontes from the Pennsylvanian-aged Wea Shale Member, eastern Nebraska. We explore the preservation of these fossils using scanning electron microscopy and energy dispersive X-ray spectroscopy. These approaches reveal additional morphological characteristics, including unique appendicular data, such as the earliest occurrence of biramous gilled appendages in Stomatopoda. We suggest that further examination of black shales will likely uncover novel records of these rare pancrustaceans.more » « less
-
Salamanders and lungfishes are the only sarcopterygians (lobe-finned vertebrates) capable of paired appendage regeneration, regardless of the amputation level. Among actinopterygians (ray-finned fishes), regeneration after amputation at the fin endoskeleton has only been demonstrated in polypterid fishes (Cladistia). Whether this ability evolved independently in sarcopterygians and actinopterygians or has a common origin remains unknown. Here we combine fin regeneration assays and comparative RNA-sequencing (RNA-seq) analysis of Polypterus and axolotl blastemas to provide support for a common origin of paired appendage regeneration in Osteichthyes (bony vertebrates). We show that, in addition to polypterids, regeneration after fin endoskeleton amputation occurs in extant representatives of 2 other nonteleost actinopterygians: the American paddlefish (Chondrostei) and the spotted gar (Holostei). Furthermore, we assessed regeneration in 4 teleost species and show that, with the exception of the blue gourami (Anabantidae), 3 species were capable of regenerating fins after endoskeleton amputation: the white convict and the oscar (Cichlidae), and the goldfish (Cyprinidae). Our comparative RNA-seq analysis of regenerating blastemas of axolotl and Polypterus reveals the activation of common genetic pathways and expression profiles, consistent with a shared genetic program of appendage regeneration. Comparison of RNA-seq data from early Polypterus blastema to single-cell RNA-seq data from axolotl limb bud and limb regeneration stages shows that Polypterus and axolotl share a regeneration-specific genetic program. Collectively, our findings support a deep evolutionary origin of paired appendage regeneration in Osteichthyes and provide an evolutionary framework for studies on the genetic basis of appendage regeneration.more » « less
-
Tracking climate change and its relationships with chemical weathering and massive volcanic activity in deep-time greatly improves our understanding of the Earth’s climate system. The Permo-Carboniferous period is a critical time interval with million year-scale glacial-deglacial cycles and massive basaltic volcanism, such as the Skagerrak-Centered (also named Skagerrak or Jutland) large igneous province. To explore the volcanism-climate interactions in this period, we obtained high precision CA-TIMS U-Pbzircon ages for three tuffaceous layers from a cored upper Pennsylvanian-lower Permian marginal marine succession in southern North China. These ages calibrate the Permo-Carboniferous biostratigraphy between ∼301–296 Ma in North China. From this dated core succession, mudrock samples and their calculated weathering index values were screened to constrain the weathering trends for the source landscapes and demonstrate a rapid increase with a subsequent decrease in source chemical weathering intensity during the period of ∼299 to 296.5 Ma. These trends coincide with the southern Gondwana glacial records, low latitude temperature changes, relative sea-level variations, and shifts in atmospheric pCO2that together document an earliest Permian climate warming-cooling perturbation with a temperature maximum at ∼298 Ma. This climate warming in the Permo-Carboniferous icehouse correlates with the emplacement of the Skagerrak-Centered large igneous province, which likely released voluminous CO2that led to climate warming during the Permo-Carboniferous transition. The immediately following cooling could possibly result from the rapid post-eruptional weathering of the massive basaltic rocks of this province in tropical latitudes, which would have sequestered atmospheric CO2and promoted return to cooler icehouse conditions. This study supports the assertation that massive basaltic volcanism could first cause rapid climate warming and then may have an overall net cooling effect as previously suggested for the Deccan Traps and the Central Atlantic Magmatic Province.more » « less
An official website of the United States government

