skip to main content


Title: Temperature and salinity, not acidification, predict near-future larval growth and larval habitat suitability of Olympia oysters in the Salish Sea
Abstract

Most invertebrates in the ocean begin their lives with planktonic larval phases that are critical for dispersal and distribution of these species. Larvae are particularly vulnerable to environmental change, so understanding interactive effects of environmental stressors on larval life is essential in predicting population persistence and vulnerability of species. Here, we use a novel experimental approach to rear larvae under interacting gradients of temperature, salinity, and ocean acidification, then model growth rate and duration of Olympia oyster larvae and predict the suitability of habitats for larval survival. We find that temperature and salinity are closely linked to larval growth and larval habitat suitability, but larvae are tolerant to acidification at this scale. We discover that present conditions in the Salish Sea are actually suboptimal for Olympia oyster larvae from populations in the region, and that larvae from these populations might actually benefit from some degree of global ocean change. Our models predict a vast decrease in mean pelagic larval duration by the year 2095, which has the potential to alter population dynamics for this species in future oceans. Additionally, we find that larval tolerance can explain large-scale biogeographic patterns for this species across its range.

 
more » « less
NSF-PAR ID:
10183947
Author(s) / Creator(s):
;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
10
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Environmental change and habitat fragmentation will affect population densities for many species. For those species that have locally adapted to persist in changed or stressful habitats, it is uncertain how density dependence will affect adaptive responses. Anurans (frogs and toads) are typically freshwater organisms, but some coastal populations of green treefrogs (Hyla cinerea) have adapted to brackish, coastal wetlands. Tadpoles from coastal populations metamorphose sooner and demonstrate faster growth rates than inland populations when reared solitarily. Although saltwater exposure has adaptively reduced the duration of the larval period for coastal populations, increases in densities during larval development typically increase time to metamorphosis and reduce rates of growth and survival. We test how combined stressors of density and salinity affect larval development between salt‐adapted (“coastal”) and nonsalt‐adapted (“inland”) populations by measuring various developmental and metamorphic phenotypes. We found that increased tadpole density strongly affected coastal and inland tadpole populations similarly. In high‐density treatments, both coastal and inland populations had reduced growth rates, greater exponential decay of growth, a smaller size at metamorphosis, took longer to reach metamorphosis, and had lower survivorship at metamorphosis. Salinity only exaggerated the effects of density on the time to reach metamorphosis and exponential decay of growth. Location of origin affected length at metamorphosis, with coastal tadpoles metamorphosing slightly longer than inland tadpoles across densities and salinities. These findings confirm that density has a strong and central influence on larval development even across divergent populations and habitat types and may mitigate the expression (and therefore detection) of locally adapted phenotypes.

     
    more » « less
  2. Abstract

    Climate change manifestation in the ocean, through warming, oxygen loss, increasing acidification, and changing particulate organic carbon flux (one metric of altered food supply), is projected to affect most deep‐ocean ecosystems concomitantly with increasing direct human disturbance. Climate drivers will alter deep‐sea biodiversity and associated ecosystem services, and may interact with disturbance from resource extraction activities or even climate geoengineering. We suggest that to ensure the effective management of increasing use of the deep ocean (e.g., for bottom fishing, oil and gas extraction, and deep‐seabed mining), environmental management and developing regulations must consider climate change. Strategic planning, impact assessment and monitoring, spatial management, application of the precautionary approach, and full‐cost accounting of extraction activities should embrace climate consciousness. Coupled climate and biological modeling approaches applied in the water and on the seafloor can help accomplish this goal. For example, Earth‐System Model projections of climate‐change parameters at the seafloor reveal heterogeneity in projected climate hazard and time of emergence (beyond natural variability) in regions targeted for deep‐seabed mining. Models that combine climate‐induced changes in ocean circulation with particle tracking predict altered transport of early life stages (larvae) under climate change. Habitat suitability models can help assess the consequences of altered larval dispersal, predict climate refugia, and identify vulnerable regions for multiple species under climate change. Engaging the deep observing community can support the necessary data provisioning to mainstream climate into the development of environmental management plans. To illustrate this approach, we focus on deep‐seabed mining and the International Seabed Authority, whose mandates include regulation of all mineral‐related activities in international waters and protecting the marine environment from the harmful effects of mining. However, achieving deep‐ocean sustainability under the UN Sustainable Development Goals will require integration of climate consideration across all policy sectors.

     
    more » « less
  3. Abstract

    Larvae of marine calcifying organisms are particularly vulnerable to the adverse effects of elevatedpCO2on shell formation because of their rapid calcification rates, reduced capacity to isolate calcifying fluid from seawater, and use of more soluble polymorphs of calcium carbonate. However, parental exposure to elevatedpCO2could benefit larval shell formation through transgenerational plastic responses. We examined the capacity of intergenerational exposure to mitigate the adverse effects of elevatedpCO2on Eastern oyster (Crassostrea virginica) early larval shell growth, shell morphology, and survival. Adult oysters were exposed to control (572 ppmpCO2) or elevatedpCO2(2827 ppmpCO2) conditions for 30 d during reproductive conditioning. Offspring from each parental treatment were produced using a partial North Carolina II cross design and grown under control and elevatedpCO2conditions for 3 d. We found evidence of transgenerational plasticity in early larval shell growth and morphology, but not in survival, in response to the parentalpCO2exposure. Larvae from parents exposed to elevatedpCO2exhibited faster shell growth rates than larvae from control parents, with this effect being significantly larger when larvae were grown under elevatedpCO2compared to control conditions. Parental exposure to elevatedpCO2, however, was insufficient to completely counteract the adverse effects of the prescribed elevatedpCO2on early larval shell formation and survival. Nevertheless, these results suggest that oysters have some capacity to acclimate intergenerationally to ocean acidification.

     
    more » « less
  4. Eastern oysters (Crassostrea virginica) are sessile, relying on a larval phase to disperse in estuaries. Oyster larval swimming behavior can alter dispersal trajectories and patterns of population connectivity. Experiments were conducted to test how both (1) acclimation time to new environmental conditions and (2) larval swimming behavior change with salinity and larval age. Acclimation time to changes in salinity was longest in lower salinity (6 ppt) and decreased with age. To test changes in behavior with salinity, larvae were placed into four salinities (6, 10, 16, and 22 ppt) where swimming was recorded. To test changes in behavior with age, larvae aged 6, 12, and 15 days were recorded. In both experiments, swimming paths were mapped in two dimensions, behavior of each path was categorized, and speed, direction, and acceleration were calculated. The frequency of upward, neutral, and downward swimming behaviors did not differ across salinity treatments but did vary with age, whereas the frequency of behavior types varied with both salinity and ontogeny. As an example, diving was observed more frequently in low salinity, and more downward helices were observed in moderate salinity, while younger larvae swam upward with more frequency than older larvae. Surprisingly, diving was observed in 10%–15% of all larvae across all ages. Given the consequence of larval behavior to marine invertebrate dispersal, changes in swimming over larval age and in response to environmental changes have important implications to marine population stability and structure. 
    more » « less
  5. Restoration of native oyster ( Crassostrea virginica ) populations in Chesapeake Bay shows great promise after three decades of failed attempts. Population models used to inform oyster restoration had integrated reef habitat quality, demonstrating that reef height determines oyster population persistence and resilience. Larval recruitment drives population dynamics of marine species, yet its impact with reef height and sediment deposition upon reef restoration is unknown. To assess the influence of reef height, sediment deposition and larval supply, we adapted a single-stage population model to incorporate stage structure using a system of four differential equations modeling change in juvenile density (J), and changes in volume of adults (A), oyster shell reef (R), and sediment (S) on an oyster reef. The JARS model was parameterized with empirical data from field experiments. Larval supply included larvae from the natal population and from outside populations. The stage-structured model possessed multiple non-negative equilibria (i.e., alternative stable states). Different initial conditions (e.g., oyster shell reef height) resulted in different final states. The main novel findings were that the critical reef height for population persistence and resilience was jointly dependent on sediment input and larval supply. A critical minimum larval supply was necessary for a reef to persist, even when initial sediment deposition was zero. As larval supply increased, the initial reef height needed for reef persistence was lowered, and oyster reef resilience was enhanced. A restoration oyster reef with higher larval influx could recover from more severe disturbances than a reef with lower larval influx. To prevent local extinction and assure a positive population state, higher levels of larval supply were required at greater sediment concentrations to overcome the negative effects of sediment accumulation on the reef. In addition, reef persistence was negatively related to sediment deposited on a reef prior to larval settlement and recruitment, implying that restoration reefs should be constructed immediately before settlement and recruitment to minimize sediment accumulation on a reef before settlement. These findings are valuable in oyster reef restoration because they can guide reef construction relative to larval supply and sediment deposition on a reef to yield effective and cost-efficient restoration strategies. 
    more » « less