skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Platform-Agnostic Learning-Based Scheduling
Heterogeneous architectures have become increasingly common. From co-packaging small and large cores, to GPUs alongside CPUs, to general-purpose heterogeneous-ISA architectures with cores implementing different ISAs. As diversity of execution cores grows, predictive models become of paramount importance for scheduling and resource allocation. In this paper, we investigate the capabilities of performance predictors in a heterogeneous-ISA setting, as well as the predictors’ effects on scheduler quality. We follow an unbiased feature selection methodology to identify the optimal set of features for this task, instead of pre-selecting features before training. Finally, we incorporate our findings in ML-based schedulers and evaluate their sensitivity to the underlying system’s level of heterogeneity. We show our schedulers to perform within 2-11% of an oracular scheduler across a variety of underlying heterogeneous-ISA multicore systems without modification.  more » « less
Award ID(s):
1652925
PAR ID:
10184030
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the 19th International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Specialized accelerators such as GPUs, TPUs, FPGAs, and custom ASICs have been increasingly deployed to train deep learning models. These accelerators exhibit heterogeneous performance behavior across model architectures. Existing schedulers for clusters of accelerators, which are used to arbitrate these expensive training resources across many users, have shown how to optimize for various multi-job, multiuser objectives, like fairness and makespan. Unfortunately, existing schedulers largely do not consider performance heterogeneity. In this paper, we propose Gavel, a heterogeneity-aware scheduler that systematically generalizes a wide range of existing scheduling policies. Gavel expresses these policies as optimization problems and then systematically transforms these problems into heterogeneity-aware versions using an abstraction we call effective throughput. Gavel then uses a round-based scheduling mechanism to ensure jobs receive their ideal allocation given the target scheduling policy. Gavel’s heterogeneity-aware policies allow a heterogeneous cluster to sustain higher input load, and improve end objectives such as makespan and average job completion time by 1.4⇥ and 3.5⇥ compared to heterogeneity-agnostic policies. 
    more » « less
  2. To cope with growing wireless bandwidth demand, millimeter wave (mmWave) communication has been identified as a promising technology to deliver Gbps throughput. However, due to the susceptibility of mmWave signals to blockage, applications can experience significant performance variability as users move around due to rapid and significant variation in channel conditions. In this context, proactive schedulers that make use of future data rate prediction have potential to bring a significant performance improvement as compared to traditional schedulers. In this work, we propose an efficient proactive algorithm that prioritizes the scheduling of scarce resources to achieve better performance than traditional schedulers. The results show that our scheduler can increase average data rate by up to 20% compared to non-proactive scheduling and achieves from 60% to 75% of the performance gain of an optimal proactive scheduler. 
    more » « less
  3. Packet scheduling determines the ordering of packets in a queuing data structure with respect to some ranking function that is mandated by a scheduling policy. It is the core component in many recent innovations to optimize network performance and utilization. Our focus in this paper is on the design and deployment of packet scheduling in soft-ware. Software schedulers have several advantages over hardware including shorter development cycle and flexibility in functionality and deployment location. We substantially improve current software packet scheduling performance,while maintaining flexibility, by exploiting underlying features of packet ranking; namely, packet ranks are integers and, at any point in time, fall within a limited range of values.We introduce Eiffel, a novel programmable packet scheduling system. At the core of Eiffel is an integer priority queue based on the Find First Set (FFS) instruction and designed to support a wide range of policies and ranking functions efficiently. As an even more efficient alternative, we also pro-pose a new approximate priority queue that can outperform FFS-based queues for some scenarios. To support flexibility,Eiffel introduces novel programming abstractions to express scheduling policies that cannot be captured by current, state-of-the-art scheduler programming models. We evaluate Eiffel in a variety of settings and in both kernel and userspace deployments. We show that it outperforms state of the art systems by 3-40x in terms of either number of cores utilized for network processing or number of flows given fixed processing capacity 
    more » « less
  4. As distributed applications become increasingly complex, so do their scheduling requirements. This development calls for cluster schedulers that are not only general, but also evolvable. Unfortunately, most existing cluster schedulers are not evolvable: when confronted with new requirements, they need major rewrites to support these requirements. Examples include gang-scheduling support in Kubernetes [6, 39] or task-affinity in Spark [39]. Some cluster schedulers [14, 30] expose physical resources to applications to address this. While these approaches are evolvable, they push the burden of implementing scheduling mechanisms in addition to the policies entirely to the application. ESCHER is a cluster scheduler design that achieves both evolvability and application-level simplicity. ESCHER uses an abstraction exposed by several recent frameworks (which we call ephemeral resources) that lets the application express scheduling constraints as resource requirements. These requirements are then satisfied by a simple mechanism matching resource demands to available resources. We implement ESCHER on Kubernetes and Ray, and show that this abstraction can be used to express common policies offered by monolithic schedulers while allowing applications to easily create new custom policies hitherto unsupported. 
    more » « less
  5. null (Ed.)
    Security specification mining is a relatively new line of research that aims to develop a set of security properties for use during the design validation phase of the hardware life-cycle. Prior work in this field has targeted open-source RISC architectures and relies on access to the register transfer level design, developers’ repositories, bug tracker databases, and email archives. We develop Astarte, a tool for security specification mining of closed source, CISC architectures. As with prior work, we target properties written at the instruction set architecture (ISA) level. We use a full-system fast emulator with a lightweight extension to generate trace data, and we partition the space of security properties on security-critical signals in the architecture to manage complexity. We evaluate the approach for the x86-64 ISA. The Astarte framework produces roughly 1300 properties. Our automated approach produces a categorization that aligns with prior manual efforts. We study two known security flaws in shipped x86/x86-64 processor implementations and show that our set of properties could have revealed the flaws. Our analysis provides insight into those properties that are guaranteed by the ISA, those that are required of the operating system, and those that have become de facto properties by virtue of many operating systems assuming the behavior. 
    more » « less