skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, April 12 until 2:00 AM ET on Saturday, April 13 due to maintenance. We apologize for the inconvenience.


Title: Supporting Upper Elementary Students’ Engineering Practices in an Integrated Science and Engineering Unit.
To support teachers in providing all students with opportunities to engage in engineering learning activities, research must examine the ways that elementary teachers support how diverse learners engage with engineering ideas and practices. This study focuses on two teachers' verbal supports in classroom discussions across two class sections of a four-week, NGSS-aligned unit that challenged students to redesign their school to reduce water runoff. We examine the research question: How and to what extent do upper-elementary teachers verbally support students' engagement with engineering practices across diverse classroom contexts in an NGSS-aligned integrated science unit? Classroom audio data was collected daily and coded to analyze support through different purposes of teacher talk. Results reveal the purpose of teachers’ talk often varied between the class sections depending on the instructional activity and indicate that teachers utilized a variety of supports toward students' engagement in different engineering practices. In one class, with a large percentage of students with individualized educational plans, teachers provided more epistemic talk about the engineering practices to contextualize the particular activities. For the other class, with a large percentage of students in advanced mathematics, teachers provided more opportunities for students to engage in discussion and support for students to do engineering. This difference in supports may decrease the opportunities for some students to rigorously engage in engineering ideas and practices. This study can inform future research on the kinds of educative supports needed to guide teaching of integrated engineering activities for diverse students.  more » « less
Award ID(s):
1742195
NSF-PAR ID:
10184090
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Paper presented at 2020 ASEE Virtual Annual Conference Content Access, Virtual On line.
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This study investigates how teachers verbally support students to engage in integrated engineering, science, and computer science activities across the implementation of an engineering project. This is important as recent research has focused on understanding how precollege students’ engagement in engineering practices is supported by teachers (Watkins et al., 2018) and the benefits of integrating engineering in precollege classes, including improved achievement in science, ability to engage in science and engineering practices inherent to engineering (i.e., engineering design), and increased awareness of engineering (National Academy of Engineering and the National Research Council; Katehi et al., 2009). Further, there is a national emphasis on integrating engineering, science, and computer science practices and concepts in science classrooms (NGSS Lead States, 2013). Yet little research has considered how teachers implement these disciplines together within one classroom, particularly elementary teachers who often have little prior experience in teaching engineering and may need support to integrate engineering design into elementary science classroom settings. In particular, this study explores how elementary teachers verbally support science and computer science concepts and practices to be implicitly and explicitly integrated into an engineering project by implementing support intended by curricular materials and/or adding their own verbal support. Implicit use of integration included students engaging in integrated practices without support to know that they were doing so; explicit use of integration included teachers providing support for students to know how and why they were integrating disciplines. Our research questions include: (1) To what extent did teachers provide implicit and explicit verbal support of integration in implementation versus how it was intended in curricular materials? (2) Does this look different between two differently-tracked class sections? Participants include two fifth-grade teachers who co-led two fifth-grade classes through a four-week engineering project. The project focused on redesigning school surfaces to mitigate water runoff. Teachers integrated disciplines by supporting students to create computational models of underlying scientific concepts to develop engineering solutions. One class had a larger proportion of students who were tracked into accelerated mathematics; the other class had a larger proportion of students with individualized educational plans (IEPs). Transcripts of whole class discussion were analyzed for instances that addressed the integration of disciplines or supported students to engage in integrated activities. Results show that all instances of integration were implicit for the class with students in advanced mathematics while most were explicit for the class with students with IEPs. Additionally, support was mainly added by the teachers rather than suggested by curricular materials. Most commonly, teachers added integration between computer science and engineering. Implications of this study are an important consideration for the support that teachers need to engage in the important, but challenging, work of integrating science and computer science practices through engineering lessons within elementary science classrooms. Particularly, we consider how to assist teachers with their verbal supports of integrated curricula through engineering lessons in elementary classrooms. This study then has the potential to significantly impact the state of knowledge in interdisciplinary learning through engineering for elementary students. 
    more » « less
  2. In this study, we examine the reported beliefs of two elementary science teachers who co-taught a four-week engineering project in which students used a computational model to design engineering solutions to reduce water runoff at their school (Lilly et al., 2020). Specifically, we explore the beliefs that elementary science teachers report while enacting an engineering project in two different classroom contexts and how they report that their beliefs may have affected instructional decisions. Classroom contexts included one general class with a larger proportion of students in advanced mathematics and one inclusive class with a larger proportion of students with individualized educational programs. During project implementation, we collected daily surveys and weekly interviews to consider teachers’ beliefs of the class sections, classroom activities, and curriculum. Two researchers performed a thematic analysis of the surveys and interviews to code reflections on teachers’ perceived differences between students in the class sections and their experiences teaching engineering in the class sections. Results suggest that teachers’ beliefs about students in these two different classroom contexts may have influenced opportunities that students had to understand and engage in disciplinary practices. The teachers reported making changes to activities based on their perceptions of student understanding and engagement and to save time which led to different experiences for students in each class section, specifically a more teacher-centered implementation for the inclusive class. Teachers also suggested specific professional development and educative supports to help teachers to support all students to engage in engineering tasks. Thus, it is important to understand teachers’ beliefs to build support for teachers in their implementation of engineering projects that meet the needs of their students and ensure that students have access and support to engage in engineering practices. 
    more » « less
  3. This fundamental research in pre-college education engineering study investigates the ways in which elementary teachers learn about engineering by engaging in the epistemic practices of engineers. Teaching engineering explicitly in elementary settings is a paradigm shift, as most K-6 teachers are not taught about engineering in their preparation programs and did not do classroom engineering as students. However, current STEM education reforms require these teachers to teach engineering in science settings and it will require concerted efforts between professional development providers and educational researchers to better help these teachers learn about and teach engineering to their students. Our study context consisted of 18 2nd and 4th grade teachers participating in one of two two-day workshops. The first day focused on what engineering is, what the epistemic practices of engineering are, and how to manage classroom engineering projects. The second day focused on how to teach a specific engineering unit for their grade level. Taking a sociomaterial view of learning, we asked the following research questions: 1. How do the engineering notebooks scaffold the teachers activities and discourse? 2. How and to what extent does the notebook support their engagement in engineering practices? Our analysis triangulated between three data sources during a two-hour time period where teachers designed, tested, and improved enclosures intended to minimize cost and mass loss of an ice cube in a heat chamber (“Perspiring Penguins” (Schnittka, 2010)). We focused on teacher talk/action collected from video/audio recordings trained on four small groups (10 total teachers). We also collected engineering notebooks they used during this activity. After initial analyses, we followed up with select teachers with targeted interview questions to focus on clarification of questions that arose. Our findings suggest that the teachers use the notebooks in ways that are significantly different from the ways engineers do; however, they are a useful pedagogical tool that supported them in attending to and discussing activities that were necessary to engage in engineering practices and design/re-design their technology. Additionally, our paper will describe specific examples where teachers had rich discussions that were not represented in the notebooks but there were references made in the notebooks that were not explicitly discussed. Implications for the importance of well-designed notebooks and the benefits of ethnographic methods for researching teacher learning will be discussed. 
    more » « less
  4. Major challenges in engineering education include retention of undergraduate engineering students (UESs) and continued engagement after the first year when concepts increase in difficulty. Additionally, employers, as well as ABET, look for students to demonstrate non-technical skills, including the ability to work successfully in groups, the ability to communicate both within and outside their discipline, and the ability to find information that will help them solve problems and contribute to lifelong learning. Teacher education is also facing challenges given the recent incorporation of engineering practices and core ideas into the Next Generation Science Standards (NGSS) and state level standards of learning. To help teachers meet these standards in their classrooms, education courses for preservice teachers (PSTs) must provide resources and opportunities to increase science and engineering knowledge, and the associated pedagogies. To address these challenges, Ed+gineering, an NSF-funded multidisciplinary collaborative service learning project, was implemented into two sets of paired-classes in engineering and education: a 100 level mechanical engineering class (n = 42) and a foundations class in education (n = 17), and a fluid mechanics class in mechanical engineering technology (n = 23) and a science methods class (n = 15). The paired classes collaborated in multidisciplinary teams of 5-8 undergraduate students to plan and teach engineering lessons to local elementary school students. Teams completed a series of previously tested, scaffolded activities to guide their collaboration. Designing and delivering lessons engaged university students in collaborative processes that promoted social learning, including researching and planning, peer mentoring, teaching and receiving feedback, and reflecting and revising their engineering lesson. The research questions examined in this pilot, mixed-methods research study include: (1) How did PSTs’ Ed+gineering experiences influence their engineering and science knowledge?; (2) How did PSTs’ and UESs’ Ed+gineering experiences influence their pedagogical understanding?; and (3) What were PSTs’ and UESs’ overall perceptions of their Ed+gineering experiences? Both quantitative (e.g., Engineering Design Process assessment, Science Content Knowledge assessment) and qualitative (student reflections) data were used to assess knowledge gains and project perceptions following the semester-long intervention. Findings suggest that the PSTs were more aware and comfortable with the engineering field following lesson development and delivery, and often better able to explain particular science/engineering concepts. Both PSTs and UESs, but especially the latter, came to realize the importance of planning and preparing lessons to be taught to an audience. UESs reported greater appreciation for the work of educators. PSTs and UESs expressed how they learned to work in groups with multidisciplinary members—this is a valuable lesson for their respective professional careers. Yearly, the Ed+gineering research team will also request and review student retention reports in their respective programs to assess project impact. 
    more » « less
  5. Abstract Background

    Integration of engineering into middle school science and mathematics classrooms is a key aspect of STEM integration. However, successful pedagogies for teachers to use engineering talk in their classrooms are not fully understood.

    Purpose/Hypothesis

    This study aims to address this need with the research question: How does a middle school life science teacher use engineering talk during an engineering design‐based STEM integration unit?

    Design/Method

    This case study examined the talk of a teacher whose students demonstrated high levels of learning in science and engineering throughout a three‐year professional development program. Transcripts of whole‐class verbal interactions for 18 class periods in the life science‐based STEM integration unit were analyzed using a theoretical framework based on the Framework for Quality K‐12 Engineering Education.

    Results

    The teacher used talk to integrate engineering in a variety of ways, skillfully weaving engineering throughout the unit. He framed lessons around problem scoping, incorporated engineering ideas into scientific verbal interactions, and aligned individual lessons and the overall unit with the engineering design process. He stayed true to the context of the engineering challenge and treated the students as young engineers.

    Conclusions

    This teacher's talk helped to integrate engineering with the science and mathematics content of the unit and modeled the practices of informed designers to help students learn engineering in the context of their science classroom. These findings have the potential to improve how educators and curricula developers utilize engineering teacher talk to support STEM integration.

     
    more » « less