skip to main content


Title: Soft Foot Sensor Design and Terrain Classification for Dynamic Legged Locomotion
Dynamic legged locomotion is being explored as a means to maneuver on rugged and unstructured terrains. However, limited foot contact sensing capabilities often prohibit bipedal robots from being deployed on complex terrains. Locomotion over cluttered outdoor environments requires the contacting foot to be aware of terrain geometries, stiffness, and granular media properties. To achieve this, we designed a new soft contact pad integrated with a variety of embedded sensors, including tactile, acoustic, capacitive, and temperature sensors, as well as an accelerometer. In addition, we devised a terrain classification algorithm based on features extracted from those sensors and various real-world terrains. The classifier uses these features as inputs and classifies various terrains via Random Forests and a memory function. Our cross-validation tests demonstrate that the proposed classification algorithm achieves an accuracy of about 96.5%, manifesting the applicability of this foot sensing device to bipedal locomotion over diverse terrains.  more » « less
Award ID(s):
1924978
NSF-PAR ID:
10184199
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
2020 3rd IEEE International Conference on Soft Robotics
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Legged robots have the advantage of being able to maneuver rough, unstructured terrains unlike their wheeled counterparts. However, many legged robots require multiple sensors and online computations to specify the gait, trajectory or contact forces in real-time for a given terrain, and these methods can break down when sensory information is unreliable or not available. Over the years, underactuated mechanisms have demonstrated great success in object grasping and manipulation tasks due to their ability to passively adapt to the geometry of the objects without sensors. In this paper, we present an application of underactuation in the design of a legged robot with prismatic legs that maneuvers unstructured terrains under open-loop control using only four actuators – one for stance for each half of the robot, one for forward translation, and one for steering. Through experimental results, we show that prismatic legs can support a statically stable stance and can facilitate locomotion over unstructured terrain while maintaining its body posture. 
    more » « less
  2. Abstract Legged robots have a unique capability of traversing rough terrains and negotiating cluttered environments. Recent control development of legged robots has enabled robust locomotion on rough terrains. However, such approaches mainly focus on maintaining balance for the robot body. In this work, we are interested in leveraging the whole body of the robot to pass through a permeable obstacle (e.g., a small confined opening) with height, width, and terrain constraints. This paper presents a planning framework for legged robots manipulating their body and legs to perform collision-free locomotion through a permeable obstacle. The planner incorporates quadrupedal gait constraint, biasing scheme, and safety margin for the simultaneous body and foothold motion planning. We perform informed sampling for the body poses and swing foot position based on the gait constraint while ensuring stability and collision avoidance. The footholds are planned based on the terrain and the contact constraint. We also integrate the planner with robot control to execute the planned trajectory successfully. We validated our approach in high-fidelity simulation and hardware experiments on the Unitree A1 robot navigating through different representative permeable obstacles. 
    more » « less
  3. Whole-body control (WBC) is a generic task-oriented control method for feedback control of loco-manipulation behaviors in humanoid robots. The combination of WBC and model-based walking controllers has been widely utilized in various humanoid robots. However, to date, the WBC method has not been employed for unsupported passive-ankle dynamic locomotion. As such, in this article, we devise a new WBC, dubbed the whole-body locomotion controller (WBLC), that can achieve experimental dynamic walking on unsupported passive-ankle biped robots. A key aspect of WBLC is the relaxation of contact constraints such that the control commands produce reduced jerk when switching foot contacts. To achieve robust dynamic locomotion, we conduct an in-depth analysis of uncertainty for our dynamic walking algorithm called the time-to-velocity-reversal (TVR) planner. The uncertainty study is fundamental as it allows us to improve the control algorithms and mechanical structure of our robot to fulfill the tolerated uncertainty. In addition, we conduct extensive experimentation for: (1) unsupported dynamic balancing (i.e., in-place stepping) with a six-degree-of-freedom biped, Mercury; (2) unsupported directional walking with Mercury; (3) walking over an irregular and slippery terrain with Mercury; and 4) in-place walking with our newly designed ten-DoF viscoelastic liquid-cooled biped, DRACO. Overall, the main contributions of this work are on: (a) achieving various modalities of unsupported dynamic locomotion of passive-ankle bipeds using a WBLC controller and a TVR planner; (b) conducting an uncertainty analysis to improve the mechanical structure and the controllers of Mercury; and (c) devising a whole-body control strategy that reduces movement jerk during walking. 
    more » « less
  4. null (Ed.)
    Ultimately, feedback control is about making adjustments using current state information in order to meet an objective in the future. In the control of bipedal locomotion, linear velocity of the center of mass has been widely accepted as the primary variable around which feedback control objectives are formulated. In this paper, we argue that it is easier to predict the one-step ahead evolution of angular momentum about the contact point than it is to make a similar prediction for linear velocity, and hence it provides a superior quantity for feedback control. So as not to confuse the benefits of predicting angular momentum with any other control design decisions, we reformulate the standard LIP model in terms of angular momentum and show how to regulate swing foot touchdown position at the end of the current step so as to meet an angular momentum objective at the end of the next step. We implement the resulting feedback controller on the 20 degreeof- freedom bipedal robot, Cassie Blue, where each leg accounts for nearly one-third of the robot’s total mass of 32 Kg. Under this controller, the robot achieves fast walking, rapid turning while walking, large disturbance rejection, and locomotion on rough terrain. 
    more » « less
  5. This study proposes a hierarchically integrated framework for safe task and motion planning (TAMP) of bipedal locomotion in a partially observable environment with dynamic obstacles and uneven terrain. The high-level task planner employs linear temporal logic for a reactive game synthesis between the robot and its environment and provides a formal guarantee on navigation safety and task completion. To address environmental partial observability, a belief abstraction model is designed by partitioning the environment into multiple belief regions and employed at the high-level navigation planner to estimate the dynamic obstacles' location. This additional location information of dynamic obstacles offered by belief abstraction enables less conservative long-horizon navigation actions beyond guaranteeing immediate collision avoidance. Accordingly, a synthesized action planner sends a set of locomotion actions to the middle-level motion planner while incorporating safe locomotion specifications extracted from safety theorems based on a reduced-order model (ROM) of the locomotion process. The motion planner employs the ROM to design safety criteria and a sampling algorithm to generate nonperiodic motion plans that accurately track high-level actions. At the low level, a foot placement controller based on an angular-momentum linear inverted pendulum model is implemented and integrated with an ankle-actuated passivity-based controller for full-body trajectory tracking. To address external perturbations, this study also investigates the safe sequential composition of the keyframe locomotion state and achieves robust transitions against external perturbations through reachability analysis. The overall TAMP framework is validated with extensive simulations and hardware experiments on bipedal walking robots Cassie and Digit designed by Agility Robotics. 
    more » « less