skip to main content

Title: Design of an Underactuated Legged Robot with Prismatic Legs for Passive Adaptability to Terrain
Legged robots have the advantage of being able to maneuver rough, unstructured terrains unlike their wheeled counterparts. However, many legged robots require multiple sensors and online computations to specify the gait, trajectory or contact forces in real-time for a given terrain, and these methods can break down when sensory information is unreliable or not available. Over the years, underactuated mechanisms have demonstrated great success in object grasping and manipulation tasks due to their ability to passively adapt to the geometry of the objects without sensors. In this paper, we present an application of underactuation in the design of a legged robot with prismatic legs that maneuvers unstructured terrains under open-loop control using only four actuators – one for stance for each half of the robot, one for forward translation, and one for steering. Through experimental results, we show that prismatic legs can support a statically stable stance and can facilitate locomotion over unstructured terrain while maintaining its body posture.
Authors:
;
Award ID(s):
1637647
Publication Date:
NSF-PAR ID:
10122432
Journal Name:
Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conferences
Sponsoring Org:
National Science Foundation
More Like this
  1. : Inspired by the locomotor nervous system of vertebrates, central pattern generator (CPG) models can be used to design gaits for articulated robots, such as crawling, swimming or legged robots. Incorporating sensory feedback for gait adaptation in these models can improve the locomotive performance of such robots in challenging terrain. However, many CPG models to date have been developed exclusively for open-loop gait generation for traversing level terrain. In this paper, we present a novel approach for incorporating inertial feedback into the CPG framework for the control of body posture during legged locomotion on steep, unstructured terrain. That is, we adapt the limit cycle of each leg of the robot with time to simultaneously produce locomotion and body posture control. We experimentally validate our approach on a hexapod robot, locomoting in a variety of steep, challenging terrains (grass, rocky slide, stairs). We show how our approach can be used to level the robot's body, allowing it to locomote at a relatively constant speed, even as terrain steepness and complexity prevents the use of an open-loop control strategy.
  2. Dynamic legged locomotion is being explored as a means to maneuver on rugged and unstructured terrains. However, limited foot contact sensing capabilities often prohibit bipedal robots from being deployed on complex terrains. Locomotion over cluttered outdoor environments requires the contacting foot to be aware of terrain geometries, stiffness, and granular media properties. To achieve this, we designed a new soft contact pad integrated with a variety of embedded sensors, including tactile, acoustic, capacitive, and temperature sensors, as well as an accelerometer. In addition, we devised a terrain classification algorithm based on features extracted from those sensors and various real-world terrains. The classifier uses these features as inputs and classifies various terrains via Random Forests and a memory function. Our cross-validation tests demonstrate that the proposed classification algorithm achieves an accuracy of about 96.5%, manifesting the applicability of this foot sensing device to bipedal locomotion over diverse terrains.
  3. When a mobile robot is deployed in a field environment, e.g., during a disaster response application, the capability of adapting its navigational behaviors to unstructured terrains is essential for effective and safe robot navigation. In this paper, we introduce a novel joint terrain representation and apprenticeship learning approach to implement robot adaptation to unstructured terrains. Different from conventional learning-based adaptation techniques, our approach provides a unified problem formulation that integrates representation and apprenticeship learning under a unified regularized optimization framework, instead of treating them as separate and independent procedures. Our approach also has the capability to automatically identify discriminative feature modalities, which can improve the robustness of robot adaptation. In addition, we implement a new optimization algorithm to solve the formulated problem, which provides a theoretical guarantee to converge to the global optimal solution. In the experiments, we extensively evaluate the proposed approach in real-world scenarios, in which a mobile robot navigates on familiar and unfamiliar unstructured terrains. Experimental results have shown that the proposed approach is able to transfer human expertise to robots with small errors, achieve superior performance compared with previous and baseline methods, and provide intuitive insights on the importance of terrain feature modalities.
  4. Soft pneumatic legged robots show promise in their ability to traverse a range of different types of terrain, including natural unstructured terrain met in applications like precision agriculture. They can adapt their body morphology to the intricacies of the terrain at hand, thus enabling robust and resilient locomotion. In this paper we capitalize upon recent developments on soft pneumatic legged robots to introduce a closed-loop trajectory tracking control scheme for operation over flat ground. Closed-loop pneumatic actuation feedback is achieved via a compact and portable pneumatic regulation board. Experimental results reveal that our soft legged robot can precisely control its body height and orientation while in quasi-static operation based on a geometric model. The robot can track both straight line and curved trajectories as well as variable-height trajectories. This work lays the basis to enable autonomous navigation for soft legged robots.
  5. Can we design motion primitives for complex legged systems uniformly for different terrain types without neglecting modeling details? This paper presents a method for rapidly generating quadrupedal locomotion on sloped terrains-from modeling to gait generation, to hardware demonstration. At the core of this approach is the observation that a quadrupedal robot can be exactly decomposed into coupled bipedal robots. Formally, this is represented through the framework of coupled control systems, wherein isolated subsystems interact through coupling constraints. We demonstrate this concept in the context of quadrupeds and use it to reduce the gait planning problem for uneven terrains to bipedal walking generation via hybrid zero dynamics. This reduction method allows for the formulation of a nonlinear optimization problem that leverages low-dimensional bipedal representations to generate dynamic walking gaits on slopes for the full-order quadrupedal robot dynamics. The result is the ability to rapidly generate quadrupedal walking gaits on a variety of slopes. We demonstrate these walking behaviors on the Vision 60 quadrupedal robot; in simulation, via walking on a range of sloped terrains of 13°, 15°, 20°, 25°, and, experimentally, through the successful locomotion of 13° and 20° ~ 25° sloped outdoor grasslands.