skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Towards AI-Assisted Smart Training Platform for Future Manufacturing Workforce
With the fast development of Industry 4.0, the ways in which manufacturing workers handle machines, materials, and products also change drastically. Such changes post several demanding challenges to the training of future workforce. First, personalized manufacturing will lead to small batch and fast changing tasks. The training procedure must demonstrate agility. Second, new interfaces to interact with human or robots will change the training procedure. Last but not least, in addition to handling the physical objects, a worker also needs to be trained to digest and respond to rich data generated at the manufacturing site. To respond to these challenges, in this paper we describe the design of an AI-assisted training platform for manufacturing workforce. The platform will collect rich data from both machines and workers. It will capture and analyze both macro and micro movement of trainees with the help of AI algorithms. At the same time, training for interaction with robot/cobot will also be covered. Mixed reality will be used to create in-situ experiences for the trainee.  more » « less
Award ID(s):
1937010 1840080
PAR ID:
10184361
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
AAAI 2020 Spring Symposium, AI in Manufacturing
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Manufacturing has adopted technologies such as automation, robotics, industrial Internet of Things (IoT), and big data analytics to improve productivity, efficiency, and capabilities in the production environment. Modern manufacturing workers not only need to be adept at the traditional manufacturing technologies but also ought to be trained in the advanced data-rich computer-automated technologies. This study analyzes the data science and analytics (DSA) skills gap in today’s manufacturing workforce to identify the critical technical skills and domain knowledge required for data science and intelligent manufacturing-related jobs that are highly in-demand in today’s manufacturing industry. The gap analysis conducted in this paper on Emsi job posting and profile data provides insights into the trends in manufacturing jobs that leverage data science, automation, cyber, and sensor technologies. These insights will be helpful for educators and industry to train the next generation manufacturing workforce. The main contribution of this paper includes (1) presenting the overall trend in manufacturing job postings in the U.S., (2) summarizing the critical skills and domain knowledge in demand in the manufacturing sector, (3) summarizing skills and domain knowledge reported by manufacturing job seekers, (4) identifying the gaps between demand and supply of skills and domain knowledge, and (5) recognize opportunities for training and upskilling workforce to address the widening skills and knowledge gap. 
    more » « less
  2. Humanity’s evolution toward an interplanetary species poses a new frontier for the construction industry: extraterrestrial construction. With fast technological advancements in manufacturing and robotics, it is a matter of when, not if, before humans make perpetual habitats on nearby planetary bodies. We envision the emerging frontier of the construction industry as extraterrestrial construction, where the role of workers and their required skills will change dramatically. Due to the extreme and hazardous outer-space conditions, the future of extraterrestrial construction will be technology-intensive, from using onsite machine and robot operations to using cyber-physical systems for managing logistical operations. Accordingly, the role and skillsets of construction workers in future extraterrestrial construction projects will contrast with the current practices on Earth. We aim to present a collective perspective on the nature of future extraterrestrial construction and the hierarchy of the skills required by future workers, as well as emerging technologies that can be used for developing a future-ready workforce. To accomplish this, we convened a national interdisciplinary workshop, engaging diverse stakeholders in the United States, including researchers, educators, and professionals, from academia, industry, and government. This paper summarizes the outcomes of our workshop, structured around three core themes: future work (extraterrestrial construction), future workers (extraterrestrial workforce), and future technology (emerging technologies for workforce training). The detailed exploration within these three themes marks an initial endeavor to chart a course for training in extraterrestrial construction, particularly with NASA’s Moon to Mars Program in mind. 
    more » « less
  3. The rapid evolution of modern manufacturing systems is driven by the integration of emerging metaverse technologies such as artificial intelligence (AI), digital twin (DT), and different forms of extended reality (XR) like virtual reality (VR), augmented reality (AR), and mixed reality (MR). These advances confront manufacturing workers with complex and evolving environments that demand digital literacy for problem solving in the future workplace. However, manufacturing industry faces a critical shortage of skilled workforce with digital literacy in the world. Further, global pandemic has significantly changed how people work and collaborate digitally and remotely. There is an urgent need to rethink digital platformization and leverage emerging technologies to propel industrial evolution toward human-centered manufacturing metaverse (MfgVerse). This paper presents a forward-looking perspective on the development of MfgVerse, highlighting current efforts in learning factory, cognitive digital twinning, and the new sharing economy of manufacturing-as-a-service (MaaS). MfgVerse is converging into multiplex networks, including a social network of human stakeholders, an interconnected network of manufacturing things or agents (e.g., machines, robots, facilities, material handling systems), a network of digital twins of physical things, as well as auxiliary networks of sales, supply chain, logistics, and remanufacturing systems. We also showcase the design and development of a virtual learning factory for workforce training. Finally, future directions, challenges, and opportunities are discussed for human-centered manufacturing metaverse. We hope this work helps stimulate more comprehensive studies and in-depth research efforts to advance MfgVerse technologies. 
    more » « less
  4. Unhelkar, Vaibhav (Ed.)
    The need to train new workers effectively and upskill the existing workforce is a challenge faced by almost every industry across the globe. The healthcare industry, in particular, is confronting a crisis. The World Health Organization (WHO) projects a shortage of 10 million healthcare workers by 2030. However, according to the Future of Jobs Report by the World Economic Forum, only half of the workers have access to training and learning opportunities. To sustain a resilient workforce and to protect the health of the world’s population, my thesis looks at using AI and robots to accelerate human learners’ acquisition of workforce skills. Specifically, I develop novel Explainable AI (XAI) algorithms to automate training to enable workers to collaborate with autonomous robots - a trend that is fast-growing. I also use statistical models to model human learner cognitive processes to create Human-Robot Interaction (HRI) systems to generate effective instructions tailored to individual learners. In addition to driving technical advances, my research is having a positive societal impact. I collaborate with Houston Methodist Hospital to create a first-of-its-kind robotic tutor for clinical nursing education to reduce healthcare-associated infections. 
    more » « less
  5. In this research paper, we explore how advanced manufacturing has led South Korea’s economy for the past several decades. It accounts for 4.5 million jobs, which is about 10% of South Korea’s population. However, the era of the Industry 4.0 is transforming the nature of the workforce in advanced manufacturing industry. Many workers could lose their jobs to automation, but it is likely that they will also find new jobs in similar occupation. Thus, it will be crucial for various stakeholders in the industry: employee, employers, educators, and policy akers to prepare for this changing nature of the workforce. However, our review of policy and research suggests that little is known about the extent to which South Korea is ready for the changing nature of the workforce in advanced manufacturing industry. In this paper, we will explore South Korea’s readiness for the change in advanced manufacturing workforce. Specifically, we will provide a review of literature relating to the impact of automation in advanced manufacturing workforce and how South Korea is preparing workers for the Industry 4.0. We conclude with promising directions for research. Taken together, this paper will offer several promising directions for further investigation into how South Korea can prepare for the impact of automation in advanced manufacturing workforce 
    more » « less