skip to main content


Title: The CyberAmbassador Training Program
The CyberAmbassador project aims to provide professional skills training for Cyber-Infrastructure (CI) professionals, with the goal of developing "CyberAmbassadors" [16] who are prepared to facilitate and lead multidisciplinary, computationally-intensive research. This NSF funded program (Award Number 1730137) has the following objectives: (1) Develop curriculum that focuses on professional skills (communications, teamwork, leadership) within the context of large scale, multidisciplinary computational research; (2) Pilot, evaluate and revise the curriculum; (3) Develop "Train the Trainers" workshops to broaden the impact of the curriculum and connect with external partners to ensure the longevity of the program beyond the timeframe of the grant. This paper introduces the core curriculum, describes different modes of delivering content that we have piloted, shares preliminary evaluation results from two particularly relevant cases, and offers initial lessons learned.  more » « less
Award ID(s):
1730137
NSF-PAR ID:
10204077
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
PEARC ’19: Proceedings of the Practice and Experience in Advanced Research Computing on the Rise of the Machines (learning)
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The CyberAmbassadors Project (NSF #1730137) is a training grant to develop professional skills curriculum (communications, teamwork, leadership) to build capacity in Cyber Infrastructure (CI) Professionals. CI Professionals are experts at high performance computing, data science algorithms, and/or supercomputing infrastructure; they are often called upon to work with experts from STEM (science, technology, engineering, mathematics) in multi-disciplinary teams to solve complex problems. The CyberAmbassadors training program seeks to improve the function of these teams by helping CI Professionals build and practice skills for effective communication, teamwork and leadership within the context of complex, multidisciplinary research. This paper summarizes the results of the pilot testing of the CyberAmbassadors curriculum, which was conducted at institutions across the United States using both in-person, online and hybrid delivery methods. A Kirkpatrick evaluation model was used to assess expectations and reasons for participation, as well as satisfaction with the training and impacts on participants’ learning and behavior. The curriculum was revised based on these initial pilot tests, and 43 volunteers have participated in “train the trainers” workshops to prepare to facilitate this training on a larger scale during 2019-20. 
    more » « less
  2. This paper describes the development of a facilitator training program that prepares volunteers to offer interactive workshops to build professional skills. This effort to “train the trainers” is part of the CyberAmbassadors workforce development project funded by the National Science Foundation (NSF). The overarching goal of the CyberAmbassadors project is to develop professional skills training that helps participants collaborate more effectively in interdisciplinary settings. The core curriculum for participants includes 20+ hours of materials and activities to build communications, teamwork, and leadership skills. The “train the trainers” project described here is a complementary effort to prepare STEM professionals to facilitate these CyberAmbassadors professional skills trainings for their own workplaces and communities. The facilitator training program was developed and tested with two cohorts, totaling more than 50 participants. Over the course of two days of in-person training, new facilitators had opportunities to experience the core curriculum as participants; to practice facilitation skills and lead group activities; to discuss practical and logistical aspects of offering training in their own communities; and to become familiar with the underlying pedagogy, learning goals, and modular structure of the professional skills curriculum. Surveys were used to collect feedback and evaluate participants’ satisfaction with the CyberAmbassadors professional skills curriculum; their self-assessment of facilitation and professional skills before and after the training; and feedback on the facilitator training experience. Responses from the first cohort of participants were used to refine the facilitator training program and it was offered to a second group of volunteers six months later. In the intervening time, several facilitators from the first cohort implemented CyberAmbassadors trainings at academic institutions, professional conferences, and industry workplaces. Participant surveys were used to provide feedback to the volunteer facilitators and to assist the project coordinators in identifying areas where additional training or support might be helpful. These lessons were used to improve the facilitator training program for the second cohort, and we recruited some of the original volunteers to help lead the second “train the trainers” experience. This approach both provides newer facilitators with additional experience and expands the number of individuals who can “train the trainers” and help to propagate the program for future participants. In addition to describing the experiences and results from this “train the trainers” effort, this paper details the information, planning tools, and supports that are incorporated throughout the CyberAmbassadors professional skills curriculum materials to assist facilitators in offering these trainings. Lessons learned from this project can be adapted to other professional education efforts, both in terms of preparing new instructors and in helping trained facilitators better understand and meet the needs of their audience. 
    more » « less
  3. This paper describes initial results from a collaborative effort to develop a flexible, open-source professional skills training program for engineers and scientists. The collaboration was initiated by Michigan State University (MSU) as part of a (successful) training grant proposal to the National Science Foundation. MSU proposed to lead efforts to develop new professional development training materials focused on communication, teamwork and leadership skills. Tau Beta Pi, the Engineering Honor Society, joined the collaboration and provided access to a national network of well-trained, volunteer facilitators who were eager for new curriculum materials. Several national organizations that offer technical training in various areas of expertise also joined the collaboration, including the National Research Mentor Network (NRMN), the Center for the Improvement of Mentored Experiences in Research (CIMER), and the Carpentries. Their contributions included experience managing large repositories of curricula and ensuring quality control while allowing materials to be updated regularly. During the first year of this collaboration, new curriculum was developed at MSU and pilot tested by facilitators from Tau Beta Pi (TBP). Several of the collaborating training programs helped to advertise or host these pilot tests. While the project is funded for another two years, the benefits of this unique collaboration are already apparent and new partners are expressing interest in expanding this project to develop a national framework for sharing resources, facilitators and curriculum between programs. 
    more » « less
  4. Engineering Futures (EF) is a professional development program developed by Tau Beta Pi, the Engineering Honor Society, in the 1980s to provide undergraduate engineering students with the “soft skills” necessary for professional success. Originally, the EF program included a series of day-long, interactive workshops led by volunteer facilitators and hosted on-site at college campuses. The original sessions included People Skills (interpersonal problem communication and resolution); Team Chartering (understanding team dynamics); Group Process (tools for effective meetings); and Analytical Problem Solving (brainstorming, list reduction and evaluation criteria). Over the decades, the EF program adapted to meet the changing needs of undergraduate students, with options for shorter sessions and the addition of a module on Effective Presentation Skills in the early 2000s. In the 2010s, the EF program directors began to explore opportunities to expand the curriculum to address new challenges. A new partnership in 2015 led to the addition of two new modules: Equity, Inclusion & Engineering Ethics; and Research Mentoring. In 2017, Tau Beta Pi partnered with several other organizations in a successful proposal to the National Science Foundation to develop updated training materials focusing on communications, teamwork and leadership skills. These materials are being designed in a modular fashion that allows them to be adjusted for different audiences (undergraduates, graduate students, professionals) and the project includes funding for a “train the trainers” program that will enable the EF materials to be deployed nationally at little or no cost to hosting organizations. This paper provides a historical context for the EF program, describes the recent efforts to update and expand the curriculum, and provides insights from several years of participation and program evaluation data. 
    more » « less
  5. null (Ed.)
    In the past decade, reports such as the National Academies' "Engineering in K-12 Education: Understanding the Status and Improving the Prospects" (2009) have discussed the importance of – and challenges of – effectively incorporating engineering concepts into the K-12 curriculum. Multiple reports have echoed and further elaborated on the need to effectively and authentically introduce engineering within K-12; not just to address a perpetual shortage of engineers, but to increase technological literacy within the U.S. The NSF-funded initiative Engineering for US All (E4USA): A National Pilot Program for High School Engineering Course and Database curriculum was intentionally designed ‘for us all;’ in other words, the design is meant to be inclusive and to engage in an examination and exploration of ‘engineering’. The intent behind the ‘for us all’ curriculum is to emphasize the idea of thinking like an engineer, rather than simply to develop more engineers. Therefore, the focus is not on ‘how to become an engineer’ but ‘what is an engineer’ and ‘who is an engineer’. This paper will discuss the design of the first iteration of the curriculum. The initial design was based on the First Year Engineering Classification Scheme, used to classify all possible content found in first-year, multidisciplinary Introduction to Engineering courses in general-admit (non direct-admit) engineering programs. The curriculum provides progressively larger engineering design experiences relating to student fields of interest and real-world problems. Course objectives are broken into four major threads. Each of these threads is woven through seven modules. The threads are: Discovering Engineering, Engineering in Society, Engineering Professional Skills, and Engineering Design. This paper will discuss the design of the first iteration of the curriculum. The initial design was based on the First Year Engineering Classification Scheme, used to classify all possible content found in first-year, multidisciplinary Introduction to Engineering courses in general-admit (non direct-admit) engineering programs. The curriculum provides progressively larger engineering design experiences relating to student fields of interest and real-world problems. Course objectives are broken into four major threads. Each of these threads is woven through seven modules. The threads are: Discovering Engineering, Engineering in Society, Engineering Professional Skills, and Engineering Design. 
    more » « less