skip to main content


Title: Rank-Based Tensor Factorization for Student Performance Prediction
One of the essential problems, in educational data mining, is to predict students' performance on future learning materials, such as problems, assignments, and quizzes. Pioneer algorithms for predicting student performance mostly rely on two sources of information: students' past performance, and learning materials' domain knowledge model. The domain knowledge model, traditionally curated by domain experts maps learning materials to concepts, topics, or knowledge components that are presented in them. However, creating a domain model by manually labeling the learning material can be a difficult and time-consuming task. In this paper, we propose a tensor factorization model for student performance prediction that does not rely on a predefined domain model. Our proposed algorithm models student knowledge as a soft membership of latent concepts. It also represents the knowledge acquisition process with an added rank-based constraint in the tensor factorization objective function. Our experiments show that the proposed model outperforms state-of-the-art algorithms in predicting student performance in two real-world datasets, and is robust to hyper-parameters.  more » « less
Award ID(s):
1755910
NSF-PAR ID:
10185066
Author(s) / Creator(s):
;
Date Published:
Journal Name:
12th International Conference on Educational Data Mining (EDM)
Page Range / eLocation ID:
288-293
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Students acquire knowledge as they interact with a variety of learning materials, such as video lectures, problems, and discussions. Modeling student knowledge at each point during their learning period and understanding the contribution of each learning material to student knowledge are essential for detecting students’ knowledge gaps and recommending learning materials to them. Current student knowledge modeling techniques mostly rely on one type of learning material, mainly problems, to model student knowledge growth. These approaches ignore the fact that students also learn from other types of material. In this paper, we propose a student knowledge model that can capture knowledge growth as a result of learning from a diverse set of learning resource types while unveiling the association between the learning materials of different types. Our multi-view knowledge model (MVKM) incorporates a flexible knowledge increase objective on top of a multi-view tensor factorization to capture occasional forgetting while representing student knowledge and learning material concepts in a lower-dimensional latent space. We evaluate our model in different experiments to show that it can accurately predict students’ future performance, differentiate between knowledge gain in different student groups and concepts, and unveil hidden similarities across learning materials of different types. 
    more » « less
  2. null (Ed.)
    Knowledge Tracing (KT), which aims to model student knowledge level and predict their performance, is one of the most important applications of user modeling. Modern KT approaches model and maintain an up-to-date state of student knowledge over a set of course concepts according to students’ historical performance in attempting the problems. However, KT approaches were designed to model knowledge by observing relatively small problem-solving steps in Intelligent Tutoring Systems. While these approaches were applied successfully to model student knowledge by observing student solutions for simple problems, such as multiple-choice questions, they do not perform well for modeling complex problem solving in students. Most importantly, current models assume that all problem attempts are equally valuable in quantifying current student knowledge. However, for complex problems that involve many concepts at the same time, this assumption is deficient. It results in inaccurate knowledge states and unnecessary fluctuations in estimated student knowledge, especially if students guess the correct answer to a problem that they have not mastered all of its concepts or slip in answering the problem that they have already mastered all of its concepts. In this paper, we argue that not all attempts are equivalently important in discovering students’ knowledge state, and some attempts can be summarized together to better represent student performance. We propose a novel student knowledge tracing approach, Granular RAnk based TEnsor factorization (GRATE), that dynamically selects student attempts that can be aggregated while predicting students’ performance in problems and discovering the concepts presented in them. Our experiments on three real-world datasets demonstrate the improved performance of GRATE, compared to the state-of-the-art baselines, in the task of student performance prediction. Our further analysis shows that attempt aggregation eliminates the unnecessary fluctuations from students’ discovered knowledge states and helps in discovering complex latent concepts in the problems. 
    more » « less
  3. null (Ed.)
    The state of the art knowledge tracing approaches mostly model student knowledge using their performance in assessed learning resource types, such as quizzes, assignments, and exercises, and ignore the non-assessed learning resources. However, many student activities are non-assessed, such as watching video lectures, participating in a discussion forum, and reading a section of a textbook, all of which potentially contributing to the students' knowledge growth. In this paper, we propose the  first novel deep learning based knowledge tracing model (DMKT) that explicitly model student's knowledge transitions over both assessed and non-assessed learning activities. With DMKT we can discover the underlying latent concepts of each non-assessed and assessed learning material and better predict the student performance in future assessed learning resources. We compare our proposed method with various state of the art knowledge tracing methods on four real-world datasets and show its effectiveness in predicting student performance, representing student knowledge, and discovering the underlying domain model. 
    more » « less
  4. Previous studies have convincingly shown that traditional, content-centered, and didactic teaching methods are not effective for developing a deep understanding and knowledge transfer. Nor does it adequately address the development of critical problem-solving skills. Active and collaborative instruction, coupled with effective means to encourage student engagement, invariably leads to better student learning outcomes irrespective of academic discipline. Despite these findings, the existing construction engineering programs, for the most part, consist of a series of fragmented courses that mainly focus on procedural skills rather than on the fundamental and conceptual knowledge that helps students become innovative problem-solvers. In addition, these courses are heavily dependent on traditional lecture-based teaching methods focused on well-structured and closed-ended problems that prepare students to plug variables into equations to get the answer. Existing programs rarely offer a systematic approach to allow students to develop a deep understanding of the engineering core concepts and discover systematic solutions for fundamental problems. Without properly understanding these core concepts, contextualized in domain-specific settings, students are not able to develop a holistic view that will help them to recognize the big picture and think outside the box to come up with creative solutions for arising problems. The long history of empirical learning in the field of construction engineering shows the significant potential of cognitive development through direct experience and reflection on what works in particular situations. Of course, the complex nature of the construction industry in the twenty-first century cannot afford an education through trial and error in the real environment. However, recent advances in computer science can help educators develop virtual environments and gamification platforms that allow students to explore various scenarios and learn from their experiences. This study aims to address this need by assessing the effectiveness of guided active exploration in a digital game environment on students’ ability to discover systematic solutions for fundamental problems in construction engineering. To address this objective, through a research project funded by the NSF Division of Engineering Education and Centers (EEC), we designed and developed a scenario-based interactive digital game, called Zebel, to guide students solve fundamental problems in construction scheduling. The proposed gamified pedagogical approach was designed based on the Constructivism learning theory and a framework that consists of six essential elements: (1) modeling; (2) reflection; (3) strategy formation; (4) scaffolded exploration; (5) debriefing; and (6) articulation. We also designed a series of pre- and post-assessment instruments for empirical data collection to assess the effectiveness of the proposed approach. The proposed gamified method was implemented in a graduate-level construction planning and scheduling course. The outcomes indicated that students with no prior knowledge of construction scheduling methods were able to discover systematic solutions for fundamental scheduling problems through their experience with the proposed gamified learning method. 
    more » « less
  5. Knowledge tracing (KT), or modeling student knowledge state given their past activity sequence, is one of the essential tasks in online education systems. Research has demonstrated that students benefit from both assessed (e.g., solving problems, which can be graded) and non-assessed learning activities (e.g., watching video lectures, which cannot be graded), and thus, modeling student knowledge from multiple types of activities with knowledge transfer between them is crucial. However, current approaches to multi-activity knowledge tracing cannot capture coarse-grained between-type associations and are primarily evaluated by predicting student performance on upcoming assessed activities (labeled data). Therefore, they are inadequate in incorporating signals from non-assessed activities (unlabeled data). We propose Graph-enhanced Multi-activity Knowledge Tracing (GMKT) that addresses these challenges by jointly learning a fine-grained recurrent memory-augmented student knowledge model and a coarse-grained graph neural network. In GMKT, we formulate multi-activity knowledge tracing as a semi-supervised sequence learning problem and optimize for accurate student performance and activity type at each time step. We demonstrate the effectiveness of our proposed model by experimenting on three real-world datasets. 
    more » « less