Understanding the drivers of morphological convergence requires investigation into its relationship with behavior and niche space, and such investigations in turn provide insights into evolutionary dynamics, functional morphology, and life history. Mygalomorph spiders (trapdoor spiders and their kin) have long been associated with high levels of morphological homoplasy, and many convergent features can be intuitively associated with different behavioral niches. Using genus‐level phylogenies based on recent genomic studies and a newly assembled matrix of discrete behavioral and somatic morphological characters, we reconstruct the evolution of burrowing behavior in the Mygalomorphae, compare the influence of behavior and evolutionary history on somatic morphology, and test hypotheses of correlated evolution between specific morphological features and behavior. Our results reveal the simplicity of the mygalomorph adaptive landscape, with opportunistic, web‐building taxa at one end, and burrowing/nesting taxa with structurally modified burrow entrances (e.g., a trapdoor) at the other. Shifts in behavioral niche, in both directions, are common across the evolutionary history of the Mygalomorphae, and several major clades include taxa inhabiting both behavioral extremes. Somatic morphology is heavily influenced by behavior, with taxa inhabiting the same behavioral niche often more similar morphologically than more closely related but behaviorally divergent taxa, and we were able to identify a suite of 11 somatic features that show significant correlation with particular behaviors. We discuss these findings in light of the function of particular morphological features, niche dynamics within the Mygalomorphae, and constraints on the mygalomorph adaptive landscape relative to other spiders.
- Award ID(s):
- 1710739
- NSF-PAR ID:
- 10185090
- Date Published:
- Journal Name:
- PeerJ
- Volume:
- 8
- ISSN:
- 2167-8359
- Page Range / eLocation ID:
- e9249
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract In many taxa, melanin-based coloration is a signal of dominance or fighting ability and is associated with concentrations of hormones that may mediate aggressive behavior. Previous studies found that experimental manipulation of melanin-based signals can result in manipulated individuals receiving more social challenges in some but not all species. These differences could arise from mismatches between the signal, behavior, and hormone concentrations. In the present study, we experimentally manipulated the chest spotting of urban and rural male song sparrows (
Melospiza melodia ) following an assessment of their territorial aggression and initial concentrations of corticosterone and testosterone and then assessed their behavior and hormone concentrations 2 weeks later. We found that males generally displayed less territorial aggression in the second trial, consistent with our previous findings. Males in the enlarged treatment decreased aggression to a greater degree than those in the reduced treatment. The effect of the plumage manipulation was similar across the rural and urban habitats. Despite the changes in behavior we detected, we found no effects of the manipulation on concentrations of testosterone or corticosterone. Our results show that melanin-based spotting in male song sparrows is a signal of territorial aggression but the physiological mechanisms that mediate the relationships between chest spotting and behavior remain to be identified.Significance statement Many bird species use their plumage to signal their dominance status, fighting ability, or motivation during interactions with other individuals to resolve conflicts without a fight. Here, we asked whether chest spotting is a signal in territorial interactions among male song sparrows. We experimentally increased or reduced the extent of spotting in males and measured the change in their aggression. We found that reduced-spotting males showed a more moderate seasonal decrease of aggression compared to males with enlarged spotting reduced aggression, possibly because the former experienced more intrusions later on in the breeding season while the latter experienced fewer intrusions. These results are consistent with chest spotting size in song sparrows functioning as a signal of territory holding potential of the bearer.
-
Abstract Ecological opportunity has been associated with increases in diversification rates across the tree of life. Under an ecological diversification model, the emergence of novel environments is hypothesized to promote morpho‐ and ecospace evolution. Whether this model holds at the clade level within the most species‐rich angiosperm genus found in North America (
Carex , Cyperaceae) is yet to be tested. Recent works demonstrate a temporal coupling of climate cooling and widespread colonization ofCarex in North America, implicating ecological diversification. In addition, research has consistently found asymmetric patterns of lineage‐level diversification in the genus. Why does variation in clade sizes exist in the genus? Is ecological diversification involved? In this study, we tested whether rates of morphological and ecological trait evolution are correlated with clade‐level species richness inCarex of North America north of Mexico. We constructed a phylogeny of 477 species—an almost complete regional sample. We estimated rates of evolution of morphological traits, habitat, and climatic niche and assessed whether differences in rates of evolution correlate with species richness differences in replicate non‐nested sister clades. Our work demonstrates significant positive correlations between climatic niche rates, habitat and reproductive morphological evolution, and species richness. This coupling of trait and niche evolution and species richness in a diverse, continental clade sample strongly suggests that the ability of clades to explore niche and functional space has shaped disparities in richness and functional diversity across the North American flora region. Our findings highlight the importance of the evolutionary history of trait and niche evolution in shaping continental and regional floras. -
Abstract Several prominent evolutionary theories propose mechanisms whereby the evolution of a defensive trait or suite of traits causes significant shifts in species diversification rate and niche evolution. We investigate the role of cuticular spines, a highly variable morphological defensive trait in the hyperdiverse ant genus
Polyrhachis , on species diversification and geographic range size. Informed by key innovation theory and the escape‐and‐radiate hypothesis, we predicted that clades with longer spines would exhibit elevated rates of diversification and larger range sizes compared to clades with shorter spines. To address these predictions, we estimated phylogenetic relationships with a phylogenomic approach utilizing ultraconserved elements and compiled morphological and biogeographic trait databases. In contrast to the first prediction, we found no association between diversification rate and any trait (spine length, body size and range size), with the sole exception of a positive association between range size and diversification in one of three trait‐based diversification analyses. However, we recovered a positive phylogenetic correlation between spine length and geographic range size, suggesting that spines promote expanded geographic range. Notably, these results were consistent across analyses using different phylogenetic inference approaches and spine trait measurement schemes. This study provides a rare investigation of the role of a defensive trait on geographic range size, and ultimately supports the hypothesis that defensive spines are a factor in increased range size inPolyrhachis ants. Furthermore, the lack of support for an association between spines and diversification, which contrasts with previous work demonstrating a positive association between spines and diversification rate, is intriguing and warrants further study. -
Sexual selection drives the evolution of many spectacular animal displays that we see in nature. Yet, how selection combines and elaborates different signal traits remains unclear. Here, we investigate this issue by testing for correlated evolution between head plumage colour and drumming behaviour in woodpeckers. These signals function in the context of mate choice and male–male competition, and they may appear to a receiver as a single multimodal display. We test for such correlations in males of 132 species using phylogenetic linear models, while considering the effect of habitat. We find that the plumage chromatic contrast is positively correlated with the speed of the drum, supporting the idea that species evolving more conspicuous plumage on their head also evolve faster drum displays. By contrast, we do not find evidence of correlated evolution between drum speed and head colour diversity, size of the head's red patch, or extent of the plumage achromatic contrast. Drum length was not correlated with any of the plumage coloration metrics. Lastly, we find no evidence that habitat acts as a strong selective force driving the evolution of head coloration or drumming elaboration. Coevolution between different signal modalities is therefore complex, and probably depends on the display components in question.more » « less