Abstract Understanding the drivers of morphological convergence requires investigation into its relationship with behavior and niche space, and such investigations in turn provide insights into evolutionary dynamics, functional morphology, and life history. Mygalomorph spiders (trapdoor spiders and their kin) have long been associated with high levels of morphological homoplasy, and many convergent features can be intuitively associated with different behavioral niches. Using genus‐level phylogenies based on recent genomic studies and a newly assembled matrix of discrete behavioral and somatic morphological characters, we reconstruct the evolution of burrowing behavior in the Mygalomorphae, compare the influence of behavior and evolutionary history on somatic morphology, and test hypotheses of correlated evolution between specific morphological features and behavior. Our results reveal the simplicity of the mygalomorph adaptive landscape, with opportunistic, web‐building taxa at one end, and burrowing/nesting taxa with structurally modified burrow entrances (e.g., a trapdoor) at the other. Shifts in behavioral niche, in both directions, are common across the evolutionary history of the Mygalomorphae, and several major clades include taxa inhabiting both behavioral extremes. Somatic morphology is heavily influenced by behavior, with taxa inhabiting the same behavioral niche often more similar morphologically than more closely related but behaviorally divergent taxa, and we were able to identify a suite of 11 somatic features that show significant correlation with particular behaviors. We discuss these findings in light of the function of particular morphological features, niche dynamics within the Mygalomorphae, and constraints on the mygalomorph adaptive landscape relative to other spiders. 
                        more » 
                        « less   
                    
                            
                            Behavioral, morphological, and ecological trait evolution in two clades of New World Sparrows ( Aimophila and Peucaea , Passerellidae)
                        
                    
    
            The New World sparrows (Passerellidae) are a large, diverse group of songbirds that vary in morphology, behavior, and ecology. Thus, they are excellent for studying trait evolution in a phylogenetic framework. We examined lability versus conservatism in morphological and behavioral traits in two related clades of sparrows ( Aimophila, Peucaea ), and assessed whether habitat has played an important role in trait evolution. We first inferred a multi-locus phylogeny which we used to reconstruct ancestral states, and then quantified phylogenetic signal among morphological and behavioral traits in these clades and in New World sparrows more broadly. Behavioral traits have a stronger phylogenetic signal than morphological traits. Specifically, vocal duets and song structure are the most highly conserved traits, and nesting behavior appears to be maintained within clades. Furthermore, we found a strong correlation between open habitat and unpatterned plumage, complex song, and ground nesting. However, even within lineages that share the same habitat type, species vary in nesting, plumage pattern, song complexity, and duetting. Our findings highlight trade-offs between behavior, morphology, and ecology in sparrow diversification. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1710739
- PAR ID:
- 10185090
- Date Published:
- Journal Name:
- PeerJ
- Volume:
- 8
- ISSN:
- 2167-8359
- Page Range / eLocation ID:
- e9249
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Sexual selection drives the evolution of many spectacular animal displays that we see in nature. Yet, how selection combines and elaborates different signal traits remains unclear. Here, we investigate this issue by testing for correlated evolution between head plumage colour and drumming behaviour in woodpeckers. These signals function in the context of mate choice and male–male competition, and they may appear to a receiver as a single multimodal display. We test for such correlations in males of 132 species using phylogenetic linear models, while considering the effect of habitat. We find that the plumage chromatic contrast is positively correlated with the speed of the drum, supporting the idea that species evolving more conspicuous plumage on their head also evolve faster drum displays. By contrast, we do not find evidence of correlated evolution between drum speed and head colour diversity, size of the head's red patch, or extent of the plumage achromatic contrast. Drum length was not correlated with any of the plumage coloration metrics. Lastly, we find no evidence that habitat acts as a strong selective force driving the evolution of head coloration or drumming elaboration. Coevolution between different signal modalities is therefore complex, and probably depends on the display components in question.more » « less
- 
            Abstract Convergent evolution is at the forefront of many form-function studies. There are many examples of multiple independent lineages evolving a similar morphology in response to similar functional demands, providing a framework for testing hypotheses of form-function evolution. However, there are numerous clades with underappreciated convergence, in which there is a perceived homogeneity in morphology. In these groups, it can be difficult to investigate causal relationships of form and function (e.g., diet influencing the evolution of jaw morphology) without the ability to disentangle phylogenetic signal from convergence. Leuciscids (Cypriniformes: Leuciscidae; formerly nested within Cyprinidae) are a species-rich clade of fishes that have diversified to occupy nearly every freshwater trophic niche, yet are considered to have relatively low morphological diversity relative to other large freshwater clades. Within the North American leuciscids, many genera contain at least one herbivore, insectivore, and larvaphage. We created 3D models from micro-computed tomography scans of 165 leuciscid species to measure functionally relevant traits within the pharyngeal jaws of these fishes. Using a published phylogeny, we tested these metrics for evolutionary integration, phylogenetic signal, and correlation with diet. Measurements of the pharyngeal jaws, muscle attachment areas, and teeth showed strong positive evolutionary correlation with each other and negative evolutionary correlation with measurements of the inter-ceratobranchial ligament (ICB ligament). Using diet data from published literature, we found extensive dietary convergence within Leuciscidae. The most common transitions we found were between herbivorous and invertivorous taxa and between insectivore types (aquatic vs. terrestrial). We document a trade-off in which herbivorous leuciscids have large teeth, short ICB ligaments, and large muscle attachment areas, whereas insectivorous leuciscids showed the opposite pattern. Inverse patterns of morphological integration between the ICB ligament the rest of the pharyngeal jaw correspond this dietary trade-off, which indicates that coordinated evolution of morphological traits contributes to functional diversity in this clade. However, these patterns only emerge in the context of phylogeny, meaning that the pharyngeal jaws of North American leuciscids converge by similar means (structural changes in response to dietary demands), but not necessarily to similar ends (absolute phenotype).more » « less
- 
            Abstract A fundamental question in evolutionary biology is how clades of organisms exert influence on one another. The evolution of the flower and subsequent plant/pollinator coevolution are major innovations that have operated in flowering plants to promote species radiations at a variety of taxonomic levels in the Neotropics. Here we test the hypothesis that pollination by Neotropical endemic hummingbirds drove the evolution of two unique stigma traits in correlation with other floral traits in New World Salvia (Lamiaceae). We examined morphometric shapes of stigma lobing across 400 Salvia spp., scored presence and absence of a stigma brush across Salvia, and used a suite of phylogenetic comparative methods to detect shape regime shifts, correlation of trait shifts with BayesTraits and phylogenetic generalized least square regressions, and the influence of scored pollinators on trait evolution using OUwie. We found that a major Neotropical clade of Salvia evolved a correlated set of stigma features, with a longer upper stigma lobe and stigmatic brush, following an early shift to hummingbird pollination. Evolutionary constraint is evident as subsequent shifts to bee pollination largely retained these two features. Our results support the hypothesis that hummingbirds guided the correlative shifts in corolla, anther connective, style and stigma shape in Neotropical Salvia, despite repeated shifts back to bee pollination.more » « less
- 
            Synopsis Traits often do not evolve in isolation or vary independently of other traits. Instead, they can be affected by covariation, both within and across species. However, the importance of within-species trait covariation and, critically, the degree to which it varies between species has yet to be thoroughly studied. Brain morphology is a trait of great ecological and behavioral importance, with regions that are hypothesized to vary in size based on behavioral and cognitive demands. Sizes of brain regions have also been shown to covary with each other across various taxa. Here, we test the degree to which covariation in brain region sizes within species has been conserved across 10 teleost fish species. These 10 species span five orders, allowing us to examine how phylogenetic proximity influences similarities in intraspecific trait covariation. Our results showed a trend that similar patterns of brain region size covariation occur in more closely related species. Interestingly, there were certain brain region pairs that showed similar levels of covariation across all species regardless of phylogenetic distance, such as the telencephalon and optic tectum, while others, such as the olfactory bulb and the hypothalamus, varied more independently. Ultimately, the patterns of brain region covariation shown here suggest that evolutionary mechanisms or constraints can act on specific brain regions independently, and that these constraints can change over evolutionary time.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    