skip to main content


Title: Multimaterial Topology Optimization of Thermoelectric Generators
Abstract

Over 50% of the energy from power plants, vehicles, oil refining, and steel or glass making process is released to the atmosphere as waste heat. As an attempt to deal with the growing energy crisis, the solid-state thermoelectric generator (TEG), which converts the waste heat into electricity using Seebeck phenomenon, has gained increasing popularity. Since the figures of merit of the thermoelectric materials are temperature dependent, it is not feasible to achieve high efficiency of the thermoelectric conversion using only one single thermoelectric material in a wide temperature range. To address this challenge, this paper proposes a method based on topology optimization to optimize the layouts of functional graded TEGs consisting of multiple materials. The objective of the optimization problem is to maximize the output power and conversion efficiency as well. The proposed method is implemented using the Solid Isotropic Material with Penalization (SIMP) method. The proposed method can make the most of the potential of different thermoelectric materials by distributing each material into its optimal working temperature interval. Instead of dummy materials, both the P and N-type electric conductors are optimally distributed with two different practical thermoelectric materials, namely Bi2Te3 & PbTe for P-type, and Bi2Te3 & CoSb3 for N-type respectively, with the yielding conversion efficiency around 12.5% in the temperature range Tc = 25°C and Th = 400°C. In the 2.5D computational simulation, however, the conversion efficiency shows a significant drop. This could be attributed to the mismatch of the external load and internal TEG resistance as well as the grey region from the topology optimization results as discussed in this paper.

 
more » « less
Award ID(s):
1762287
NSF-PAR ID:
10185256
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ASME IDETC/CIE 2019
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A large amount of energy from power plants, vehicles, oil refining, and steel or glass making process is released to the atmosphere as waste heat. The thermoelectric generator (TEG) provides a way to reutilize this portion of energy by converting temperature differences into electricity using Seebeck phenomenon. Because the figures of merit zT of the thermoelectric materials are temperature-dependent, it is not feasible to achieve high efficiency of the thermoelectric conversion using only one single thermoelectric material in a wide temperature range. To address this challenge, the authors propose a method based on topology optimization to optimize the layouts of functional graded TEGs consisting of multiple materials. The multimaterial TEG is optimized using the solid isotropic material with penalization (SIMP) method. Instead of dummy materials, both the P-type and N-type electric conductors are optimally distributed with two different practical thermoelectric materials. Specifically, Bi2Te3 and Zn4Sb3 are selected for the P-type element while Bi2Te3 and CoSb3 are employed for the N-type element. Two optimization scenarios with relatively regular domains are first considered with one optimizing on both the P-type and N-type elements simultaneously, and the other one only on single P-type element. The maximum conversion efficiency could reach 9.61% and 12.34% respectively in the temperature range from 25 °C to 400 °C. CAD models are reconstructed based on the optimization results for numerical verification. A good agreement between the performance of the CAD model and optimization result is achieved, which demonstrates the effectiveness of the proposed method. 
    more » « less
  2. Thermoelectric (TE) waste heat recovery has attracted significant attention over the past decades, owing to its direct heat-to-electricity conversion capability and reliable operation. However, methods for application-specific, system-level TE design have not been thoroughly investigated. This work provides detailed design optimization strategies and exergy analysis for TE waste heat recovery systems. To this end, we propose the use of TE system equipped on the exhaust of a gas turbine power plant for exhaust waste heat recovery and use it as a case study. A numerical tool has been developed to solve the coupled charge and heat current equations with temperature-dependent material properties and convective heat transfer at the interfaces with the exhaust gases at the hot side and with the ambient air at the heat sink side. Our calculations show that at the optimum design with 50% fill factor and 6 mm leg thickness made of state-of-the-art Bi2Te3 alloys, the proposed system can reach power output of 10.5 kW for the TE system attached on a 2 m-long, 0.5 × 0.5 m2-area exhaust duct with system efficiency of 5% and material cost per power of 0.23 $/W. Our extensive exergy analysis reveals that only 1% of the exergy content of the exhaust gas is exploited in this heat recovery process and the exergy efficiency of the TE system can reach 8% with improvement potential of 85%.

     
    more » « less
  3. Thermoelectric materials, which can convert waste heat into electricity or act as solid‐state Peltier coolers, are emerging as key technologies to address global energy shortages and environmental sustainability. However, discovering materials with high thermoelectric conversion efficiency is a complex and slow process. The emerging field of high‐throughput material discovery demonstrates its potential to accelerate the development of new thermoelectric materials combining high efficiency and low cost. The synergistic integration of high‐throughput material processing and characterization techniques with machine learning algorithms can form an efficient closed‐loop process to generate and analyze broad datasets to discover new thermoelectric materials with unprecedented performances. Meanwhile, the recent development of advanced manufacturing methods provides exciting opportunities to realize scalable, low‐cost, and energy‐efficient fabrication of thermoelectric devices. This review provides an overview of recent advances in discovering thermoelectric materials using high‐throughput methods, including processing, characterization, and screening. Advanced manufacturing methods of thermoelectric devices are also introduced to realize the broad impacts of thermoelectric materials in power generation and solid‐state cooling. In the end, this article also discusses the future research prospects and directions.

     
    more » « less
  4. Solar thermoelectric generators (STEGs) often require long thermoelectric (TE) legs and efficient cooling at the cold side to increase the temperature difference across TE legs and, thus, the power output. We investigate the effects of direct side-wall air cooling of TE legs on the power output of STEGs fabricated with high aspect-ratio as well as V-shaped p-type and n-type TE couples without additional heat sinks. Wire-type metallic TE materials are welded together to create V-shape TE leg arrays without additional electrodes and attached to a ceramic plate with a solar absorber on top to complete the STEG. The power generation performance of the STEG is investigated with varying wind speed under concentrated solar irradiation. Finite element simulation is performed to further analyze the heat transfer and thermoelectric performance. We find that although sidewall air cooling helps to keep the cold-side temperature cooler in both natural and forced convection regimes, it can also lower the hot-side temperature to reduce the net temperature difference and, thus, the power output and efficiency. Partial thermal insulation of TE couples can further enhance the power output under forced air convection by keeping the hot side temperature higher. The developed STEG achieves a maximum power density of 230 μW/cm2 and a system efficiency of 0.023% under 10 suns with natural convection. The low efficiency was mainly due to the low ZT of the metallic TE materials used and the unoptimized leg length. Our simulation shows that the system efficiency can be improved to 2.8% with state-of-the-art Bi2Te3 alloys at an optimal leg length. 
    more » « less
  5. The concept of the dimensionless thermoelectric figure of merit zT was derived by A.F. Ioffe and has been widely used to assess the desirability of thermoelectric materials for devices. Solid state physics does not set limits on this criterion, but it can be shown that such restrictions are imposed by the laws of thermodynamics. The physical meaning of zT can be interpreted as the ratio of the virtual efficiency of a thermoelectric generator (TEG) ηo and the Carnot efficiency ηc: zT = ηo/ηc. Hence, the conclusion about the zT restriction: lim(zT) ≤ 1, which is correlated with the data on the properties of well-studied thermoelectric materials, but contradicts much new experimental data. This contradiction serves as a pretext for further study of possible constraints on zT. An additional bonus from this analysis is the possibility of the experimental determination of zT by direct measurement of temperatures, heat flux, and open circle voltage. An analysis of the expanded mathematical model of a TEG shows that the influence of the Biot criterion on the power capacity of the TEG significantly exceeds the influence of zT. That is, it is possible to compensate for the high thermal conductivity of materials due to more intense heat transfer. This approach to improving the characteristics is demonstrated by developing a TEG for the conversion of latent heat of liquid natural gas (LNG). 
    more » « less