skip to main content


Title: Flocking-based live streaming of 360-degree video
Streaming of live 360-degree video allows users to follow a live event from any view point and has already been deployed on some commercial platforms. However, the current systems can only stream the video at relatively low-quality because the entire 360-degree video is delivered to the users under limited bandwidth. In this paper, we propose to use the idea of "flocking" to improve the performance of both prediction of field of view (FoV) and caching on the edge servers for live 360-degree video streaming. By assigning variable playback latencies to all the users in a streaming session, a "streaming flock" is formed and led by low latency users in the front of the flock. We propose a collaborative FoV prediction scheme where the actual FoV information of users in the front of the flock are utilized to predict of users behind them. We further propose a network condition aware flocking strategy to reduce the video freeze and increase the chance for collaborative FoV prediction on all users. Flocking also facilitates caching as video tiles downloaded by the front users can be cached by an edge server to serve the users at the back of the flock, thereby reducing the traffic in the core network. We propose a latency-FoV based caching strategy and investigate the potential gain of applying transcoding on the edge server. We conduct experiments using real-world user FoV traces and WiGig network bandwidth traces to evaluate the gains of the proposed strategies over benchmarks. Our experimental results demonstrate that the proposed streaming system can roughly double the effective video rate, which is the video rate inside a user's actual FoV, compared to the prediction only based on the user's own past FoV trajectory, while reducing video freeze. Furthermore, edge caching can reduce the traffic in the core network by about 80%, which can be increased to 90% with transcoding on edge server.  more » « less
Award ID(s):
1816500
NSF-PAR ID:
10185415
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
PubProceedings of the 11th ACM Multimedia Systems Conference
Page Range / eLocation ID:
26 to 37
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Future view prediction for a 360-degree video streaming system is important to save the network bandwidth and improve the Quality of Experience (QoE). Historical view data of a single viewer and multiple viewers have been used for future view prediction. Video semantic information is also useful to predict the viewer's future behavior. However, extracting video semantic information requires powerful computing hardware and large memory space to perform deep learning-based video analysis. It is not a desirable condition for most of client devices, such as small mobile devices or Head Mounted Display (HMD). Therefore, we develop an approach where video semantic analysis is executed on the media server, and the analysis results are shared with clients via the Semantic Flow Descriptor (SFD) and View-Object State Machine (VOSM). SFD and VOSM become new descriptive additions of the Media Presentation Description (MPD) and Spatial Relation Description (SRD) to support 360-degree video streaming. Using the semantic-based approach, we design the Semantic-Aware View Prediction System (SEAWARE) to improve the overall view prediction performance. The evaluation results of 360-degree videos and real HMD view traces show that the SEAWARE system improves the view prediction performance and streams high-quality video with limited network bandwidth. 
    more » « less
  2. null (Ed.)
    We investigate a novel communications system that integrates scalable multi-layer 360-degree video tiling, viewport-adaptive rate-distortion optimal resource allocation, and VR-centric edge computing and caching, to enable future high-quality untethered VR streaming. Our system comprises a collection of 5G small cells that can pool their communication, computing, and storage resources to collectively deliver scalable 360-degree video content to mobile VR clients at much higher quality. Our major contributions are rigorous design of multi-layer 360-degree tiling and related models of statistical user navigation, and analysis and optimization of edge-based multi-user VR streaming that integrates viewport adaptation and server cooperation. We also explore the possibility of network coded data operation and its implications for the analysis, optimization, and system performance we pursue here. We demonstrate considerable gains in delivered immersion fidelity, featuring much higher 360-degree viewport peak signal to noise ratio (PSNR) and VR video frame rates and spatial resolutions. 
    more » « less
  3. Panoramic video streaming has received great attention recently due to its immersive experience. Different from traditional video streaming, it typically consumes 4≈ 6× larger bandwidth with the same resolution. Fortunately, users can only see a portion (roughly 20%) of 360° scenes at each time and thus it is sufficient to deliver such a portion, namely Field of View (FoV), if we can accurately predict user’s motion. In practice, we usually deliver a portion larger than FoV to tolerate inaccurate prediction. Intuitively, the larger the delivered portion, the higher the prediction accuracy. This however leads to a lower transmission success probability. The goal is to select an appropriate delivered portion to maximize system throughput, which can be formulated as a multi-armed bandit problem, where each arm represents the delivered portion. Different from traditional bandit problems with single feedback information, we have two-level feedback information (i.e., both prediction and transmission outcomes) after each decision on the selected portion. As such, we propose a Thompson Sampling algorithm based on two-level feedback information, and demonstrate its superior performance than its traditional counterpart via simulations. 
    more » « less
  4. Dual-connectivity streaming is a key enabler of next generation six Degrees Of Freedom (6DOF) Virtual Reality (VR) scene immersion. Indeed, using conventional sub-6 GHz WiFi only allows to reliably stream a low-quality baseline representation of the VR content, while emerging high-frequency communication technologies allow to stream in parallel a high-quality user viewport-specific enhancement representation that synergistically integrates with the baseline representation, to deliver high-quality VR immersion. We investigate holistically as part of an entire future VR streaming system two such candidate emerging technologies, Free Space Optics (FSO) and millimeter-Wave (mmWave) that benefit from a large available spectrum to deliver unprecedented data rates. We analytically characterize the key components of the envisioned dual-connectivity 6DOF VR streaming system that integrates in addition edge computing and scalable 360° video tiling, and we formulate an optimization problem to maximize the immersion fidelity delivered by the system, given the WiFi and mmWave/FSO link rates, and the computing capabilities of the edge server and the users’ VR headsets. This optimization problem is mixed integer programming of high complexity and we formulate a geometric programming framework to compute the optimal solution at low complexity. We carry out simulation experiments to assess the performance of the proposed system using actual 6DOF navigation traces from multiple mobile VR users that we collected. Our results demonstrate that our system considerably advances the traditional state-of-the-art and enables streaming of 8K-120 frames-per-second (fps) 6DOF content at high fidelity. 
    more » « less
  5. After the emergence of video streaming services, more creative and diverse multimedia content has become available, and now the capability of streaming 360-degree videos will open a new era of multimedia experiences. However, streaming these videos requires larger bandwidth and less latency than what is found in conventional video streaming systems. Rate adaptation of tiled videos and view prediction techniques are used to solve this problem. In this paper, we introduce the Navigation Graph, which models viewing behaviors in the temporal (segments) and the spatial (tiles) domains to perform the rate adaptation of tiled media associated with the view prediction. The Navigation Graph allows clients to perform view prediction more easily by sharing the viewing model in the same way in which media description information is shared in DASH. It is also useful for encoding the trajectory information in the media description file, which could also allow for more efficient navigation of 360-degree videos. This paper provides information about the creation of the Navigation Graph and its uses. The performance evaluation shows that the Navigation Graph based view prediction and rate adaptation outperform other existing tiled media streaming solutions. Navigation Graph is not limited to 360-degree video streaming applications, but it can also be applied to other tiled media streaming systems, such as volumetric media streaming for augmented reality applications. 
    more » « less