skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: SEAWARE: Semantic Aware View Prediction System for 360-degree Video Streaming
Future view prediction for a 360-degree video streaming system is important to save the network bandwidth and improve the Quality of Experience (QoE). Historical view data of a single viewer and multiple viewers have been used for future view prediction. Video semantic information is also useful to predict the viewer's future behavior. However, extracting video semantic information requires powerful computing hardware and large memory space to perform deep learning-based video analysis. It is not a desirable condition for most of client devices, such as small mobile devices or Head Mounted Display (HMD). Therefore, we develop an approach where video semantic analysis is executed on the media server, and the analysis results are shared with clients via the Semantic Flow Descriptor (SFD) and View-Object State Machine (VOSM). SFD and VOSM become new descriptive additions of the Media Presentation Description (MPD) and Spatial Relation Description (SRD) to support 360-degree video streaming. Using the semantic-based approach, we design the Semantic-Aware View Prediction System (SEAWARE) to improve the overall view prediction performance. The evaluation results of 360-degree videos and real HMD view traces show that the SEAWARE system improves the view prediction performance and streams high-quality video with limited network bandwidth.  more » « less
Award ID(s):
1901137
PAR ID:
10280854
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
IEEE International Symposium on Multimedia (ISM)
Page Range / eLocation ID:
57 to 64
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. After the emergence of video streaming services, more creative and diverse multimedia content has become available, and now the capability of streaming 360-degree videos will open a new era of multimedia experiences. However, streaming these videos requires larger bandwidth and less latency than what is found in conventional video streaming systems. Rate adaptation of tiled videos and view prediction techniques are used to solve this problem. In this paper, we introduce the Navigation Graph, which models viewing behaviors in the temporal (segments) and the spatial (tiles) domains to perform the rate adaptation of tiled media associated with the view prediction. The Navigation Graph allows clients to perform view prediction more easily by sharing the viewing model in the same way in which media description information is shared in DASH. It is also useful for encoding the trajectory information in the media description file, which could also allow for more efficient navigation of 360-degree videos. This paper provides information about the creation of the Navigation Graph and its uses. The performance evaluation shows that the Navigation Graph based view prediction and rate adaptation outperform other existing tiled media streaming solutions. Navigation Graph is not limited to 360-degree video streaming applications, but it can also be applied to other tiled media streaming systems, such as volumetric media streaming for augmented reality applications. 
    more » « less
  2. null (Ed.)
    We demonstrate a video 360 navigation and streaming system for Mobile HMD devices. The Navigation Graph (NG) concept is used to predict future views that use a graph model that captures both temporal and spatial viewing behavior of prior viewers. Visualization of video 360 content navigation and view prediction algorithms is used for assessment of Quality of Experience (QoE) and evaluation of the accuracy of the NG-based view prediction algorithm. 
    more » « less
  3. Streaming of live 360-degree video allows users to follow a live event from any view point and has already been deployed on some commercial platforms. However, the current systems can only stream the video at relatively low-quality because the entire 360-degree video is delivered to the users under limited bandwidth. In this paper, we propose to use the idea of "flocking" to improve the performance of both prediction of field of view (FoV) and caching on the edge servers for live 360-degree video streaming. By assigning variable playback latencies to all the users in a streaming session, a "streaming flock" is formed and led by low latency users in the front of the flock. We propose a collaborative FoV prediction scheme where the actual FoV information of users in the front of the flock are utilized to predict of users behind them. We further propose a network condition aware flocking strategy to reduce the video freeze and increase the chance for collaborative FoV prediction on all users. Flocking also facilitates caching as video tiles downloaded by the front users can be cached by an edge server to serve the users at the back of the flock, thereby reducing the traffic in the core network. We propose a latency-FoV based caching strategy and investigate the potential gain of applying transcoding on the edge server. We conduct experiments using real-world user FoV traces and WiGig network bandwidth traces to evaluate the gains of the proposed strategies over benchmarks. Our experimental results demonstrate that the proposed streaming system can roughly double the effective video rate, which is the video rate inside a user's actual FoV, compared to the prediction only based on the user's own past FoV trajectory, while reducing video freeze. Furthermore, edge caching can reduce the traffic in the core network by about 80%, which can be increased to 90% with transcoding on edge server. 
    more » « less
  4. Bulterman_Dick ; Kankanhalli_Mohan ; Muehlhaueser_Max ; Persia_Fabio ; Sheu_Philip ; Tsai_Jeffrey (Ed.)
    The emergence of 360-video streaming systems has brought about new possibilities for immersive video experiences while requiring significantly higher bandwidth than traditional 2D video streaming. Viewport prediction is used to address this problem, but interesting storylines outside the viewport are ignored. To address this limitation, we present SAVG360, a novel viewport guidance system that utilizes global content information available on the server side to enhance streaming with the best saliency-captured storyline of 360-videos. The saliency analysis is performed offline on the media server with powerful GPU, and the saliency-aware guidance information is encoded and shared with clients through the Saliency-aware Guidance Descriptor. This enables the system to proactively guide users to switch between storylines of the video and allow users to follow or break guided storylines through a novel user interface. Additionally, we present a viewing mode prediction algorithms to enhance video delivery in SAVG360. Evaluation of user viewport traces in 360-videos demonstrate that SAVG360 outperforms existing tiled streaming solutions in terms of overall viewport prediction accuracy and the ability to stream high-quality 360 videos under bandwidth constraints. Furthermore, a user study highlights the advantages of our proactive guidance approach over predicting and streaming of where users look. 
    more » « less
  5. Predicting where users will look inside head-mounted displays (HMDs) and fetching only the relevant content is an effective approach for streaming bulky 360 videos over bandwidth-constrained networks. Despite previous efforts, anticipating users’ fast and sudden head movements is still difficult because there is a lack of clear understanding of the unique visual attention in 360 videos that dictates the users’ head movement in HMDs. This in turn reduces the effectiveness of streaming systems and degrades the users’ Quality of Experience. To address this issue, we propose to extract salient cues unique in the 360 video content to capture the attentive behavior of HMD users. Empowered by the newly discovered saliency features, we devise a head-movement prediction algorithm to accurately predict users’ head orientations in the near future. A 360 video streaming framework that takes full advantage of the head movement predictor is proposed to enhance the quality of delivered 360 videos. Practical trace-driven results show that the proposed saliency-based 360 video streaming system reduces the stall duration by 65% and the stall count by 46%, while saving 31% more bandwidth than state-of-the-art approaches. 
    more » « less