skip to main content


Title: Distributed Temperature Control in Laser-Based Manufacturing
Abstract Temperature control is essential for regulating material properties in laser-based manufacturing. Motion and power of the scanning laser affect local temperature evolution, which in turn determines the a posteriori microstructure. This paper addresses the problem of adjusting the laser speed and power to achieve the desired values of key process parameters: cooling rate and melt pool size. The dynamics of a scanning laser system is modeled by a one-dimensional (1D) heat conduction equation, with laser power as the heat input and heat dissipation to the ambient. Since the model is 1D, length and size are essentially the same. We pose the problem as a regulation problem in the (moving) laser frame. The first step is to obtain the steady-state temperature distribution and the corresponding input based on the desired cooling rate and melt pool size. The controller adjusts the input around the steady-state feedforward based on the deviation of the measured temperature field from the steady-state distribution. We show that with suitably defined outputs, the system is strictly passive from the laser motion and power. To avoid over-reliance on the model, the steady-state laser speed and power are adaptively updated, resulting in an integral-like update law for the feedforward. Moreover, the heat transfer coefficient to the ambient may be uncertain, and can also be adaptively updated. The final form of the control law combines passive error temperature field feedback with adaptive feedforward and parameter estimation. The closed-loop asymptotical stability is shown using the Lyapunov arguments, and the controller performance is demonstrated in a simulation.  more » « less
Award ID(s):
1729336
NSF-PAR ID:
10185606
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Dynamic Systems, Measurement, and Control
Volume:
142
Issue:
6
ISSN:
0022-0434
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This letter presents the design and experimental validation of a real-time image-based feedback control system for metal laser powder bed fusion (LPBF). A coaxial melt pool video stream is used to control laser power in real-time at 2 kHz. Modeling of the melt pool image response to changes in the input laser power is presented. Based on this identified model, a real-time feedback controller is implemented experimentally on a single track and part scales. On a single-track scale, the controller successfully tracks a time-varying melt pool reference. On a part-level scale, the controller successfully regulates the melt pool image signature to the desired reference value, reducing layer-to-layer signal variation and eliminating within-layer signal drift. 
    more » « less
  2. The dynamic phenomenon of a melt pool during the laser powder bed fusion (LPBF) process is complex and sensitive to process parameters. As the energy density input exceeds a certain threshold, a huge vapor depression may form, known as the keyhole. This study focuses on understanding the keyhole behavior and related pore formation during the LPBF process through numerical analysis. For this purpose, a thermo-fluid model with discrete powder particles is developed. The powder distribution, obtained from a discrete element method (DEM), is incorporated into the computational domain to develop a 3D process physics model using flow-3d. The melt pool formation during the conduction mode and the keyhole mode of melting has been discerned and explained. The high energy density leads to the formation of a vapor column and consequently pores under the laser scan track. Further, the keyhole shape resulted from different laser powers and scan speeds is investigated. The numerical results indicated that the keyhole size increases with the increase in the laser power even with the same energy density. The keyhole becomes stable at a higher power, which may reduce the occurrence of pores during laser scanning. 
    more » « less
  3. Textile-based compression devices are widely used in fields such as healthcare, astronautics, cosmetics, defense, and more. While traditional compression garments are only able to apply passive pressure on the body, there have been some efforts to integrate smart materials such as shape memory alloys (SMAs) to make compression garments active and controllable. However, despite the advances in this field, accurate control of applied pressure on the body due remains a challenge due to vast population-scale anthropometric variability and intra-subjects variability in tissue softness, even if the actuators themselves are fully characterized. In this study, we begin to address these challenges by developing a novel size-adjustable SMA-based smart tourniquet capable of producing a controllable pressure for circumferential applications. The developed prototype was tested on an inflatable pressure cuff wrapped around a rigid cylinder. The thermal activation of SMA coils was achieved through Joule heating, and a microcontroller and a programmable power supply are used to provide the input signal. To control the compression force, a closed-loop PID controller was implemented, and the performance of the system was evaluated in 5 different testing conditions for variable and cyclic compression levels. The experiments showed that the controlled system could follow the desired control pressure reference with a steady-state of 1 mmHg. The compression tourniquet is able to produce more than 33 mmHg with an average actuation rate of 0.19 mmHg/s. This is the first demonstration of accurate closed-loop control of an SMA-incorporated compression technology to the best of our knowledge. This paper enables new, dynamic systems with controllable activation and low-effort donning and doffing, with applications ranging from healthcare solutions to advanced spacesuit design. 
    more » « less
  4. Abstract

    Textile-based compression devices are widely used in fields such as healthcare, astronautics, cosmetics, defense, and more. While traditional compression garments are only able to apply passive pressure on the body, there have been some efforts to integrate smart materials such as shape memory alloys (SMAs) to make compression garments active and controllable. However, despite the advances in this field, accurate control of applied pressure on the body due remains a challenge due to vast population-scale anthropometric variability and intra-subjects variability in tissue softness, even if the actuators themselves are fully characterized. In this study, we begin to address these challenges by developing a novel size-adjustable SMA-based smart tourniquet capable of producing a controllable pressure for circumferential applications. The developed prototype was tested on an inflatable pressure cuff wrapped around a rigid cylinder. The thermal activation of SMA coils was achieved through Joule heating, and a microcontroller and a programmable power supply are used to provide the input signal. To control the compression force, a closed-loop PID controller was implemented, and the performance of the system was evaluated in 5 different testing conditions for variable and cyclic compression levels. The experiments showed that the controlled system could follow the desired control pressure reference with a steady-state of 1 mmHg. The compression tourniquet is able to produce more than 33 mmHg with an average actuation rate of 0.19 mmHg/s. This is the first demonstration of accurate closed-loop control of an SMA-incorporated compression technology to the best of our knowledge. This paper enables new, dynamic systems with controllable activation and low-effort donning and doffing, with applications ranging from healthcare solutions to advanced spacesuit design.

     
    more » « less
  5. Abstract. This study explores how the continental lithospheric mantle (CLM) may be heated during channelized melt transport when there is thermal disequilibrium between (melt-rich) channels and surrounding (melt-poor) regions.Specifically, I explore the role of disequilibrium heat exchange in weakening and destabilizing the lithosphere from beneath as melts infiltrate into the lithosphere–asthenosphere boundary (LAB) in intraplate continental settings.During equilibration, hotter-than-ambient melts would be expected to heat the surrounding CLM, but we lack an understanding of the expected spatiotemporal scales and how these depend on channel geometries, infiltration duration, and transport rates.This study assesses the role of heat exchange between migrating material in melt-rich channels and their surroundings in the limit where advective effects are larger than diffusive heat transfer (Péclet numbers > 10).I utilize a 1D advection–diffusion model that includes thermal exchange between melt-rich channels and the surrounding melt-poor region, parameterized by the volume fraction of channels (ϕ), average relative velocity (vchannel) between material inside and outside of channels, channel spacing (d), and timescale of episodic or repeated melt infiltration (τ).The results suggest the following: (1) during episodic infiltration of hotter-than-ambient melt, a steady-state thermal reworking zone (TRZ) associated with spatiotemporally varying disequilibrium heat exchange forms at the LAB.(2) The TRZ grows by the transient migration of a disequilibrium-heating front at a material-dependent velocity, reaching a maximum steady-state width δ proportional to ϕvchannel(τ/d)n, where n≈2 for periodic thermal perturbations and n≈1 for a single finite-duration thermal pulse.For geologically reasonable model parameters, the spatiotemporal scales associated with establishment of the TRZ are comparable with those inferred for the migration of the LAB based on geologic observations within continental intra-plate settings, such as the western US.The results of this study suggest that, for channelized transport speeds of vchannel=1 m yr−1, channel spacings d≈102 m, and timescales of episodic melt infiltration τ≈101 kyr, the steady-state width of the TRZ in the lowermost CLM is ≈10 km.(3) Within the TRZ, disequilibrium heat exchange may contribute ≈10-5 W m−3 to the LAB heat budget. 
    more » « less