skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Distributed Temperature Control in Laser-Based Manufacturing
Abstract Temperature control is essential for regulating material properties in laser-based manufacturing. Motion and power of the scanning laser affect local temperature evolution, which in turn determines the a posteriori microstructure. This paper addresses the problem of adjusting the laser speed and power to achieve the desired values of key process parameters: cooling rate and melt pool size. The dynamics of a scanning laser system is modeled by a one-dimensional (1D) heat conduction equation, with laser power as the heat input and heat dissipation to the ambient. Since the model is 1D, length and size are essentially the same. We pose the problem as a regulation problem in the (moving) laser frame. The first step is to obtain the steady-state temperature distribution and the corresponding input based on the desired cooling rate and melt pool size. The controller adjusts the input around the steady-state feedforward based on the deviation of the measured temperature field from the steady-state distribution. We show that with suitably defined outputs, the system is strictly passive from the laser motion and power. To avoid over-reliance on the model, the steady-state laser speed and power are adaptively updated, resulting in an integral-like update law for the feedforward. Moreover, the heat transfer coefficient to the ambient may be uncertain, and can also be adaptively updated. The final form of the control law combines passive error temperature field feedback with adaptive feedforward and parameter estimation. The closed-loop asymptotical stability is shown using the Lyapunov arguments, and the controller performance is demonstrated in a simulation.  more » « less
Award ID(s):
1729336
PAR ID:
10185606
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Dynamic Systems, Measurement, and Control
Volume:
142
Issue:
6
ISSN:
0022-0434
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Reliable process control for the laser powder bed fusion process, especially at the melt pool scale, remains an open challenge. One of the reasons for this is the lack of suitable control-oriented models and associated control design strategies. To address this issue, this paper (1) identifies an empirical control-oriented model of geometry-dependent melt pool behavior and (2) experimentally demonstrates melt pool regulation with a feedforward controller for laser power based on this model. First, the study establishes that the melt pool signature increases as the scan lines decrease in length. An empirical model of this behavior is developed and validated on different geometries at varying laser power levels. Second, the model is used to design a line-to-line feedforward controller that provides an optimal laser power sequence for a given geometry. Finally, this controller is validated experimentally and is demonstrated to suppress the in-layer geometry-related melt pool signal deviations for different test geometries 
    more » « less
  2. Abstract This letter presents the design and experimental validation of a real-time image-based feedback control system for metal laser powder bed fusion (LPBF). A coaxial melt pool video stream is used to control laser power in real-time at 2 kHz. Modeling of the melt pool image response to changes in the input laser power is presented. Based on this identified model, a real-time feedback controller is implemented experimentally on a single track and part scales. On a single-track scale, the controller successfully tracks a time-varying melt pool reference. On a part-level scale, the controller successfully regulates the melt pool image signature to the desired reference value, reducing layer-to-layer signal variation and eliminating within-layer signal drift. 
    more » « less
  3. Abstract Challenge 3 of the 2022 NIST additive manufacturing benchmark (AM Bench) experiments asked modelers to submit predictions for solid cooling rate, liquid cooling rate, time above melt, and melt pool geometry for single and multiple track laser powder bed fusion process using moving lasers. An in-house developedAdditiveManufacturingComputationalFluidDynamics code (AM-CFD) combined with a cylindrical heat source is implemented to accurately predict these experiments. Heuristic heat source calibration is proposed relating volumetric energy density (ψ) based on experiments available in the literature. The parameters of the heat source of the computational model are initially calibrated based on a Higher Order Proper Generalized Decomposition- (HOPGD) based surrogate model. The prediction using the calibrated heat source agrees quantitatively with NIST measurements for different process conditions (laser spot diameter, laser power, and scan speed). A scaling law based on keyhole formation is also utilized in calibrating the parameters of the cylindrical heat source and predicting the challenge experiments. In addition, an improvement on the heat source model is proposed to relate the Volumetric Energy Density (VEDσ) to the melt pool aspect ratio. The model shows further improvement in the prediction of the experimental measurements for the melt pool, including cases at higher VEDσ. Overall, it is concluded that the appropriate selection of laser heat source parameterization scheme along with the heat source model is crucial in the accurate prediction of melt pool geometry and thermal measurements while bypassing the expensive computational simulations that consider increased physics equations. 
    more » « less
  4. The dynamic phenomenon of a melt pool during the laser powder bed fusion (LPBF) process is complex and sensitive to process parameters. As the energy density input exceeds a certain threshold, a huge vapor depression may form, known as the keyhole. This study focuses on understanding the keyhole behavior and related pore formation during the LPBF process through numerical analysis. For this purpose, a thermo-fluid model with discrete powder particles is developed. The powder distribution, obtained from a discrete element method (DEM), is incorporated into the computational domain to develop a 3D process physics model using flow-3d. The melt pool formation during the conduction mode and the keyhole mode of melting has been discerned and explained. The high energy density leads to the formation of a vapor column and consequently pores under the laser scan track. Further, the keyhole shape resulted from different laser powers and scan speeds is investigated. The numerical results indicated that the keyhole size increases with the increase in the laser power even with the same energy density. The keyhole becomes stable at a higher power, which may reduce the occurrence of pores during laser scanning. 
    more » « less
  5. In the laser powder bed fusion additive manufacturing process, the quality of fabrications is intricately tied to the laser–matter interaction, specifically the formation of the melt pool. This study experimentally examined the intricacies of melt pool characteristics and surface topography across diverse laser powers and speeds via single-track laser scanning on a bare plate and powder bed for 316L stainless steel. The results reveal that the presence of a powder layer amplifies melt pool instability and worsens irregularities due to increased laser absorption and the introduction of uneven mass from the powder. To provide a comprehensive understanding of melt pool dynamics, a high-fidelity computational model encompassing fluid dynamics, heat transfer, vaporization, and solidification was developed. It was validated against the measured melt pool dimensions and morphology, effectively predicting conduction and keyholing modes with irregular surface features. Particularly, the model explained the forming mechanisms of a defective morphology, termed swell-undercut, at high power and speed conditions, detailing the roles of recoil pressure and liquid refilling. As an application, multiple-track simulations replicate the surface features on cubic samples under two distinct process conditions, showcasing the potential of the laser–matter interaction model for process optimization. 
    more » « less