skip to main content


Title: Improving Dense Crowd Counting Convolutional Neural Networks using Inverse k-Nearest Neighbor Maps and Multiscale Upsampling [Improving Dense Crowd Counting Convolutional Neural Networks using Inverse k-Nearest Neighbor Maps and Multiscale Upsampling]
Gatherings of thousands to millions of people frequently occur for an enormous variety of events, and automated counting of these high-density crowds is useful for safety, management, and measuring significance of an event. In this work, we show that the regularly accepted labeling scheme of crowd density maps for training deep neural networks is less effective than our alternative inverse k-nearest neighbor (i$k$NN) maps, even when used directly in existing state-of-the-art network structures. We also provide a new network architecture MUD-i$k$NN, which uses multi-scale upsampling via transposed convolutions to take full advantage of the provided i$k$NN labeling. This upsampling combined with the i$k$NN maps further improves crowd counting accuracy. Our new network architecture performs favorably in comparison with the state-of-the-art. However, our labeling and upsampling techniques are generally applicable to existing crowd counting architectures.  more » « less
Award ID(s):
1827505 1737533
NSF-PAR ID:
10185642
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications
Volume:
5
Page Range / eLocation ID:
185 to 195
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Gatherings of thousands to millions of people frequently occur for an enormous variety of educational, social, sporting, and political events, and automated counting of these high-density crowds is useful for safety, management, and measuring significance of an event. In this work, we show that the regularly accepted labeling scheme of crowd density maps for training deep neural networks may not be the most effective one. We propose an alternative inverse k-nearest neighbor (i[Formula: see text]NN) map mechanism that, even when used directly in existing state-of-the-art network structures, shows superior performance. We also provide new network architecture mechanisms that we demonstrate in our own MUD-i[Formula: see text]NN network architecture, which uses multi-scale drop-in replacement upsampling via transposed convolutions to take full advantage of the provided i[Formula: see text]NN labeling. This upsampling combined with the i[Formula: see text]NN maps further improves crowd counting accuracy. We further analyze several variations of the i[Formula: see text]NN labeling mechanism, which apply transformations on the [Formula: see text]NN measure before generating the map, in order to consider the impact of camera perspective views, image resolutions, and the changing rates of the mapping functions. To alleviate the effects of crowd density changes in each image, we also introduce an attenuation mechanism in the i[Formula: see text]NN mapping. Experimentally, we show that inverse square root [Formula: see text]NN map variation (iR[Formula: see text]NN) provides the best performance. Discussions are provided on computational complexity, label resolutions, the gains in mapping and upsampling, and details of critical cases such as various crowd counts, uneven crowd densities, and crowd occlusions. 
    more » « less
  2. In this work, we generalize semi-supervised generative adversarial networks (GANs) from classification problems to regression for use in dense crowd counting. In the last several years, the importance of improving the training of neural networks using semi-supervised training has been thoroughly demonstrated for classification problems. This work presents a dual-goal GAN which seeks both to provide the number of individuals in a densely crowded scene and distinguish between real and generated images. This method allows the dual-goal GAN to benefit from unlabeled data in the training process, improving the predictive capabilities of the discriminating network compared to the fully-supervised version of the network. Typical semi-supervised GANs are unable to function in the regression regime due to biases introduced when using a single prediction goal. Using the proposed approach, the amount of data which needs to be annotated for dense crowd counting can be significantly reduced. 
    more » « less
  3. In this work, we use a generative adversarial network (GAN) to train crowd counting networks using minimal data. We describe how GAN objectives can be modified to allow for the use of unlabeled data to benefit inference training in semi-supervised learning. More generally, we explain how these same methods can be used in more generic multiple regression target semi-supervised learning, with crowd counting being a demonstrative example. Given a convolutional neural network (CNN) with capabilities equivalent to the discriminator in the GAN, we provide experimental results which show that our GAN is able to outperform the CNN even when the CNN has access to significantly more labeled data. This presents the potential of training such networks to high accuracy with little data. Our primary goal is not to outperform the state-of-the-art using an improved method on the entire dataset, but instead we work to show that through semi-supervised learning we can reduce the data required to train an inference network to a given accuracy. To this end, systematic experiments are performed with various numbers of images and cameras to show under which situations the semi-supervised GANs can improve results. 
    more » « less
  4. In this article, we present a low-energy inference method for convolutional neural networks in image classification applications. The lower energy consumption is achieved by using a highly pruned (lower-energy) network if the resulting network can provide a correct output. More specifically, the proposed inference method makes use of two pruned neural networks (NNs), namely mildly and aggressively pruned networks, which are both designed offline. In the system, a third NN makes use of the input data for the online selection of the appropriate pruned network. The third network, for its feature extraction, employs the same convolutional layers as those of the aggressively pruned NN, thereby reducing the overhead of the online management. There is some accuracy loss induced by the proposed method where, for a given level of accuracy, the energy gain of the proposed method is considerably larger than the case of employing any one pruning level. The proposed method is independent of both the pruning method and the network architecture. The efficacy of the proposed inference method is assessed on Eyeriss hardware accelerator platform for some of the state-of-the-art NN architectures. Our studies show that this method may provide, on average, 70% energy reduction compared to the original NN at the cost of about 3% accuracy loss on the CIFAR-10 dataset. 
    more » « less
  5. Abstract

    Manatees are aquatic mammals with voracious appetites. They rely on sea grass as the main food source, and often spend up to eight hours a day grazing. They move slow and frequently stay in groups (i.e. aggregations) in shallow water to search for food, making them vulnerable to environment change and other risks. Accurate counting manatee aggregations within a region is not only biologically meaningful in observing their habit, but also crucial for designing safety rules for boaters, divers, etc., as well as scheduling nursing, intervention, and other plans. In this paper, we propose a deep learning based crowd counting approach to automatically count number of manatees within a region, by using low quality images as input. Because manatees have unique shape and they often stay in shallow water in groups, water surface reflection, occlusion, camouflage etc. making it difficult to accurately count manatee numbers. To address the challenges, we propose to use Anisotropic Gaussian Kernel (AGK), with tunable rotation and variances, to ensure that density functions can maximally capture shapes of individual manatees in different aggregations. After that, we apply AGK kernel to different types of deep neural networks primarily designed for crowd counting, including VGG, SANet, Congested Scene Recognition network (CSRNet), MARUNet etc. to learn manatee densities and calculate number of manatees in the scene. By using generic low quality images extracted from surveillance videos, our experiment results and comparison show that AGK kernel based manatee counting achieves minimum Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). The proposed method works particularly well for counting manatee aggregations in environments with complex background.

     
    more » « less