Internet of drones (IoD), employing drones as the internet of things (IoT) devices, brings flexibility to IoT networks and has been used to provision several applications (e.g., object tracking and traffic surveillance). The explosive growth of users and IoD applications injects massive traffic into IoD networks, hence causing congestions and reducing the quality of service (QoS). In order to improve the QoS, caching at IoD gateways is a promising solution which stores popular IoD data and sends them directly to the users instead of activating drones to transmit the data; this reduces the traffic in IoD networks. In order to fully utilize the storage-limited caches, appropriate content placement decisions should be made to determine which data should be cached. On the other hand, appropriate drone association strategies, which determine the serving IoD gateway for each drone, help distribute the network traffic properly and hence improve the QoS. In our work, we consider a joint optimization of drone association and content placement problem aimed at maximizing the average data transfer rate. This problem is formulated as an integer linear programming (ILP) problem. We then design the Drone Association and Content Placement (DACP) algorithm to solve this problem with low computational complexity. Extensive simulations demonstrate the performance of DACP.
more »
« less
Power Control in Internet of Drones by Deep Reinforcement Learning
Internet of Drones (IoD) employs drones as the internet of things (IoT) devices to provision applications such as traffic surveillance and object tracking. Data collection service is a typical application where multiple drones are deployed to collect information from the ground and send them to the IoT gateway for further processing. The performance of IoD networks is constrained by drones’ battery capacities, and hence we utilize both energy harvesting technologies and power control to address this limitation. Specifically, we optimize drones’ wireless transmission power at each time epoch in energy harvesting aided time-varying IoD networks for the data collection service with the objective to minimize the average system energy cost. We then formulate a Markov Decision Process (MDP) model to characterize the power control process in dynamic IoD networks, which is then solved by our proposed model-free deep actor-critic reinforcement learning algorithm. The performance of our algorithm is demonstrated via extensive simulations.
more »
« less
- Award ID(s):
- 1814748
- PAR ID:
- 10185643
- Date Published:
- Journal Name:
- 2020 IEEE International Conference on Communications (ICC 2020)
- Page Range / eLocation ID:
- 1 to 6
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Over the past few years, the synergic usage of unmanned aerial vehicles (later drones) and Internet of Things (IoT) has successfully transformed into the Internet of Drones (IoD) paradigm, where the data of interest is gathered and delivered to the Zone Service Provider (ZSP) by drones for substantial additional analysis. Considering the sensitivity of collected information and the impact of information disclosure, information privacy and security issues should be resolved properly so that the maximum potential of IoD can be realized in the increasingly complex cyber threat environment. Ideally, an authentication and key agreement protocol can be adopted to establish secure communications between drones and the ZSP in an insecure environment. Nevertheless, a large group of drones authenticating with the ZSP simultaneously will lead to a severe authentication signaling congestion, which inevitably degrades the quality of service (QoS) of IoD systems. To properly address the above-mentioned issues, a lightweight group authentication protocol, called liteGAP, is proposed in this paper. liteGAP can achieve the authenticated key establishment between a group of drones and the ZSP concurrently in the IoD environment using lightweight operations such as hash function, bitwise XOR, and physical unclonable function (PUF). We verify liteGAP using AVISPA (a tool for the automatic verification of security protocols) and conduct formal and informal security analysis, proving that liteGAP meets all pre-defined security requirements and withstand various potential cyber attacks. Moreover, we develop an experimental framework and conduct extensive experiments on liteGAP and two benchmark schemes (e.g., GASE and rampIoD). Experimental findings show that liteGAP outperforms its counterparts in terms of computational cost as well as communication overhead.more » « less
-
As the next-generation battery substitute for IoT system, energy harvesting (EH) technology revolutionizes the IoT industry with environmental friendliness, ubiquitous accessibility, and sustainability, which enables various self-sustaining IoT applications. However, due to the weak and intermittent nature of EH power, the performance of EH-powered IoT systems as well as its collaborative routing mechanism can severely deteriorate, rendering unpleasant data package loss during each power failure. Such a phenomenon makes conventional routing policies and energy allocation strategies impractical. Given the complexity of the problem, reinforcement learning (RL) appears to be one of the most promising and applicable methods to address this challenge. Nevertheless, although the energy allocation and routing policy are jointly optimized by the RL method, due to the energy restriction of EH devices, the inappropriate configuration of multi-hop network topology severely degrades the data collection performance. Therefore, this article first conducts a thorough mathematical discussion and develops the topology design and validation algorithm under energy harvesting scenarios. Then, this article developsDeepIoTRouting, a distributed and scalable deep reinforcement learning (DRL)-based approach, to address the routing and energy allocation jointly for the energy harvesting powered distributed IoT system. The experimental results show that with topology optimization,DeepIoTRoutingachieves at least 38.71% improvement on the amount of data delivery to sink in a 20-device IoT network, which significantly outperforms state-of-the-art methods.more » « less
-
Many recent works have shown substantial efficiency boosts from performing inference tasks on Internet of Things (IoT) nodes rather than merely transmitting raw sensor data. However, such tasks, e.g., convolutional neural networks (CNNs), are very compute intensive. They are therefore challenging to complete at sensing-matched latencies in ultra-low-power and energy-harvesting IoT nodes. ReRAM crossbar-based accelerators (RCAs) are an ideal candidate to perform the dominant multiplication-and-accumulation (MAC) operations in CNNs efficiently, but conventional, performance-oriented RCAs, while energy-efficient, are power hungry and ill-optimized for the intermittent and unstable power supply of energy-harvesting IoT nodes. This paper presents the ResiRCA architecture that integrates a new, lightweight, and configurable RCA suitable for energy harvesting environments as an opportunistically executing augmentation to a baseline sense-and-transmit battery-powered IoT node. To maximize ResiRCA throughput under different power levels, we develop the ResiSchedule approach for dynamic RCA reconfiguration. The proposed approach uses loop tiling-based computation decomposition, model duplication within the RCA, and inter-layer pipelining to reduce RCA activation thresholds and more closely track execution costs with dynamic power income. Experimental results show that ResiRCA together with ResiSchedule achieve average speedups and energy efficiency improvements of 8× and 14× respectively compared to a baseline RCA with intermittency-unaware scheduling.more » « less
-
Green wireless networks Wake-up radio Energy harvesting Routing Markov decision process Reinforcement learning 1. Introduction With 14.2 billions of connected things in 2019, over 41.6 billions expected by 2025, and a total spending on endpoints and services that will reach well over $1.1 trillion by the end of 2026, the Internet of Things (IoT) is poised to have a transformative impact on the way we live and on the way we work [1–3]. The vision of this ‘‘connected continuum’’ of objects and people, however, comes with a wide variety of challenges, especially for those IoT networks whose devices rely on some forms of depletable energy support. This has prompted research on hardware and software solutions aimed at decreasing the depen- dence of devices from ‘‘pre-packaged’’ energy provision (e.g., batteries), leading to devices capable of harvesting energy from the environment, and to networks – often called green wireless networks – whose lifetime is virtually infinite. Despite the promising advances of energy harvesting technologies, IoT devices are still doomed to run out of energy due to their inherent constraints on resources such as storage, processing and communica- tion, whose energy requirements often exceed what harvesting can provide. The communication circuitry of prevailing radio technology, especially, consumes relevant amount of energy even when in idle state, i.e., even when no transmissions or receptions occur. Even duty cycling, namely, operating with the radio in low energy consumption ∗ Corresponding author. E-mail address: koutsandria@di.uniroma1.it (G. Koutsandria). https://doi.org/10.1016/j.comcom.2020.05.046 (sleep) mode for pre-set amounts of time, has been shown to only mildly alleviate the problem of making IoT devices durable [4]. An effective answer to eliminate all possible forms of energy consumption that are not directly related to communication (e.g., idle listening) is provided by ultra low power radio triggering techniques, also known as wake-up radios [5,6]. Wake-up radio-based networks allow devices to remain in sleep mode by turning off their main radio when no communication is taking place. Devices continuously listen for a trigger on their wake-up radio, namely, for a wake-up sequence, to activate their main radio and participate to communication tasks. Therefore, devices wake up and turn their main radio on only when data communication is requested by a neighboring device. Further energy savings can be obtained by restricting the number of neighboring devices that wake up when triggered. This is obtained by allowing devices to wake up only when they receive specific wake-up sequences, which correspond to particular protocol requirements, including distance from the destina- tion, current energy status, residual energy, etc. This form of selective awakenings is called semantic addressing [7]. Use of low-power wake-up radio with semantic addressing has been shown to remarkably reduce the dominating energy costs of communication and idle listening of traditional radio networking [7–12]. This paper contributes to the research on enabling green wireless networks for long lasting IoT applications. Specifically, we introduce a ABSTRACT This paper presents G-WHARP, for Green Wake-up and HARvesting-based energy-Predictive forwarding, a wake-up radio-based forwarding strategy for wireless networks equipped with energy harvesting capabilities (green wireless networks). Following a learning-based approach, G-WHARP blends energy harvesting and wake-up radio technology to maximize energy efficiency and obtain superior network performance. Nodes autonomously decide on their forwarding availability based on a Markov Decision Process (MDP) that takes into account a variety of energy-related aspects, including the currently available energy and that harvestable in the foreseeable future. Solution of the MDP is provided by a computationally light heuristic based on a simple threshold policy, thus obtaining further computational energy savings. The performance of G-WHARP is evaluated via GreenCastalia simulations, where we accurately model wake-up radios, harvestable energy, and the computational power needed to solve the MDP. Key network and system parameters are varied, including the source of harvestable energy, the network density, wake-up radio data rate and data traffic. We also compare the performance of G-WHARP to that of two state-of-the-art data forwarding strategies, namely GreenRoutes and CTP-WUR. Results show that G-WHARP limits energy expenditures while achieving low end-to-end latency and high packet delivery ratio. Particularly, it consumes up to 34% and 59% less energy than CTP-WUR and GreenRoutes, respectively.more » « less
An official website of the United States government

