skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Intelligent Networking for Energy Harvesting Powered IoT Systems
As the next-generation battery substitute for IoT system, energy harvesting (EH) technology revolutionizes the IoT industry with environmental friendliness, ubiquitous accessibility, and sustainability, which enables various self-sustaining IoT applications. However, due to the weak and intermittent nature of EH power, the performance of EH-powered IoT systems as well as its collaborative routing mechanism can severely deteriorate, rendering unpleasant data package loss during each power failure. Such a phenomenon makes conventional routing policies and energy allocation strategies impractical. Given the complexity of the problem, reinforcement learning (RL) appears to be one of the most promising and applicable methods to address this challenge. Nevertheless, although the energy allocation and routing policy are jointly optimized by the RL method, due to the energy restriction of EH devices, the inappropriate configuration of multi-hop network topology severely degrades the data collection performance. Therefore, this article first conducts a thorough mathematical discussion and develops the topology design and validation algorithm under energy harvesting scenarios. Then, this article developsDeepIoTRouting, a distributed and scalable deep reinforcement learning (DRL)-based approach, to address the routing and energy allocation jointly for the energy harvesting powered distributed IoT system. The experimental results show that with topology optimization,DeepIoTRoutingachieves at least 38.71% improvement on the amount of data delivery to sink in a 20-device IoT network, which significantly outperforms state-of-the-art methods.  more » « less
Award ID(s):
2348818
PAR ID:
10515842
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
ACM Transactions on Sensor Networks
Volume:
20
Issue:
2
ISSN:
1550-4859
Page Range / eLocation ID:
1 to 31
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    There is an increasing demand for performing machine learning tasks, such as human activity recognition (HAR) on emerging ultra-low-power internet of things (IoT) platforms. Recent works show substantial efficiency boosts from performing inference tasks directly on the IoT nodes rather than merely transmitting raw sensor data. However, the computation and power demands of deep neural network (DNN) based inference pose significant challenges when executed on the nodes of an energy-harvesting wireless sensor network (EH-WSN). Moreover, managing inferences requiring responses from multiple energy-harvesting nodes imposes challenges at the system level in addition to the constraints at each node. This paper presents a novel scheduling policy along with an adaptive ensemble learner to efficiently perform HAR on a distributed energy-harvesting body area network. Our proposed policy, Origin, strategically ensures efficient and accurate individual inference execution at each sensor node by using a novel activity-aware scheduling approach. It also leverages the continuous nature of human activity when coordinating and aggregating results from all the sensor nodes to improve final classification accuracy. Further, Origin proposes an adaptive ensemble learner to personalize the optimizations based on each individual user. Experimental results using two different HAR data-sets show Origin, while running on harvested energy, to be at least 2.5% more accurate than a classical battery-powered energy aware HAR classifier continuously operating at the same average power. 
    more » « less
  2. null (Ed.)
    As the number of Internet of Things (IoT) devices continues to increase, energy-harvesting (EH) devices eliminate the need to replace batteries or find outlets for sensors in indoor environments. This comes at a cost, however, as these energy-harvesting devices introduce new failure modes not present in traditional IoT devices: extended periods of no harvestable energy cause them to go dormant, their often simple wireless protocols are unreliable, and their limited energy reserves prohibit many diagnostic features. While energy-harvesting sensors promise easy-to-setup and maintenance-free deployments, their limitations hinder robust, long-term data collection. To continuously monitor and maintain a network of energy-harvesting devices in buildings, we propose the EH-HouseKeeper. EH-HouseKeeper is a data-driven system that monitors EH device compliance and predicts healthy signal zones in a building based on the existing gateway location(s) and building profile for easier device maintenance. EH-HouseKeeper does this by first filtering excess event-triggered data points and applying representation learning on building features that describe the path between the gateways and the device. We assessed EH-HouseKeeper by deploying 125 energy-harvesting sensors of varying types in a 17,000 square foot research infrastructure, randomly masking a quarter of the sensors as the test set for validation. The results of our 6-month data-collection period demonstrate an average greater than 80% accuracy in predicting the health status of the subset. Our results validate techniques for assessing sensor health status across device types, for inferring gateway status, and approaches to assist in identifying between gateway, transmission, and sensor faults. 
    more » « less
  3. Energy harvesting (EH) and management (EM) have emerged as enablers of self-sustained wearable devices. Since EH alone is not sufficient for self-sustainability due to uncertainties of ambient sources and user activities, there is a critical need for a user-independent EM approach that does not rely on expected EH predictions. We present a generalized energy management framework (GEM-RL) using multi-objective reinforcement learning. GEM-RL learns the trade-off between utilization and the battery energy level of the target device under dynamic EH patterns and battery conditions. It also uses a lightweight approximate dynamic programming (ADP) technique that utilizes the trained MORL agent to optimize the utilization of the device over a longer period. Thorough experiments show that, on average, GEM-RL achieves Pareto front solutions within 5.4% of the offline Oracle for a given day. For a 7-day horizon, it achieves utility up to 4% within the offline Oracle and up to 50% higher utility compared to baseline EM approaches. The hardware implementation on a wearable device shows negligible execution time (1.98 ms) and energy consumption (23.17 μJ) overhead. 
    more » « less
  4. Routing solutions for multi-hop underwater wireless sensor networks suffer significant performance degradation as they fail to adapt to the overwhelming dynamics of underwater environments. To respond to this challenge, we propose a new data forwarding scheme where relay selection swiftly adapts to the varying conditions of the underwater channel. Our protocol, termed CARMA for Channel-aware Reinforcement learning-based Multi-path Adaptive routing, adaptively switches between single-path and multi-path routing guided by a distributed reinforcement learning framework that jointly optimizes route-long energy consumption and packet delivery ratio. We compare the performance of CARMA with that of three other routing solutions, namely, CARP, QELAR and EFlood, through SUNSET-based simulations and experiments at sea. Our results show that CARMA obtains a packet delivery ratio that is up to 40% higher than that of all other protocols. CARMA also delivers packets significantly faster than CARP, QELAR and EFlood, while keeping network energy consumption at bay. 
    more » « less
  5. Emerging flexible and stretchable devices open up novel and attractive applications beyond traditional rigid wearable devices. Since the small and flexible form-factor severely limits the battery capacity, energy harvesting (EH) stands out as a critical enabler of new devices. Despite increasing interest in recent years, the capacity of wearable energy harvesting remains unknown. Prior work analyzes the power generated by a single and typically rigid transducer. This choice limits the EH potential and undermines physical flexibility. Moreover, current results do not translate to total harvested energy over a given period, which is crucial from a developer perspective. In contrast, this paper explores the daily energy harvesting potential of combining flexible light and motion energy harvesters. It first presents a multi-modal energy harvesting system design whose inputs are flexible photo-voltaic cells and piezoelectric patches. We measure the generated power under various light intensity and gait speeds. Finally, we construct daily energy harvesting patterns of 9593 users by integrating our measurements with the activity data from the American Time Use Survey. Our results show that the proposed system can harvest on average 0. 6mAh @ 3. 6V per day. 
    more » « less