skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Private resource allocators and their applications
This paper introduces a new cryptographic primitive called a private resource allocator (PRA) that can be used to allocate resources (e.g., network bandwidth, CPUs) to a set of clients without revealing to the clients whether any other clients received resources. We give several constructions of PRAs that provide guarantees ranging from information-theoretic to differential privacy. PRAs are useful in preventing a new class of attacks that we call allocation-based side-channel attacks. These attacks can be used, for example, to break the privacy guarantees of anonymous messaging systems that were designed specifically to defend against side-channel and traffic analysis attacks. Our implementation of PRAs in Alpenhorn, which is a recent anonymous messaging system, shows that PRAs increase the network resources required to start a conversation by up to 16× (can be made as low as 4×in some cases), but add no overhead once the conversation has been established.  more » « less
Award ID(s):
1733794
PAR ID:
10185985
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2020 {IEEE} Symposium on Security and Privacy, {SP} 2020
Page Range / eLocation ID:
372 to 391
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. xisting network switches implement scheduling disciplines such as FIFO or deficit round robin that provide good utilization or fairness across flows, but do so at the expense of leaking a variety of information via timing side channels. To address this privacy breach, we propose a new scheduling mechanism for switches called indifferent-first scheduling (IFS). A salient aspect of IFS is that it provides privacy (a notion of strong isolation) to clients that opt-in, while preserving the (good) performance and utilization of FIFO or round robin for clients that are satisfied with the status quo. Such a hybrid scheduling mechanism addresses the main drawback of prior proposals such as time-division multiple access (TDMA) that provide strong isolation at the cost of low utilization and increased packet latency for all clients. We identify limitations of modern programmable switches which inhibit an implementation of IFS without compromising its privacy guarantees, and show that a version of IFS with full security can be implemented at line rate in the recently proposed push-in-first-out (PIFO) queuing architecture. 
    more » « less
  2. Weller, Adrian (Ed.)
    While differential privacy (DP) offers strong theoretical privacy guarantees, implementations of DP mechanisms may be vulnerable to side-channel attacks, such as timing attacks. When sampling methods such as MCMC or rejection sampling are used to implement a privacy mechanism, the runtime can leak private information. We characterize the additional privacy cost due to the runtime of a rejection sampler in terms of both (, δ)-DP as well as f -DP. We also show that unless the acceptance probability is constant across databases, the runtime of a rejection sampler does not satisfy -DP for any . We show that there is a similar breakdown in privacy with adaptive rejection samplers. We propose three modifications to the rejection sampling algorithm, with varying assumptions, to protect against timing attacks by making the runtime independent of the data. The modification with the weakest assumptions is an approximate sampler, introducing a small increase in the privacy cost, whereas the other modifications give perfect samplers. We also use our techniques to develop an adaptive rejection sampler for log-H ̈older densities, which also has data-independent runtime. We give several examples of DP mechanisms that fit the assumptions of our methods and can thus be implemented using our samplers. 
    more » « less
  3. Weller, Adrian (Ed.)
    Differential privacy (DP) offers strong theoretical privacy guarantees, though implementations of DP mechanisms may be vulnerable to side-channel attacks, such as timing attacks. When sampling methods such as MCMC or rejection sampling are used to implement a mechanism, the runtime can leak private information. We characterize the additional privacy cost due to the runtime of a rejection sampler in terms of both (epsilon,delta)-DP as well as f-DP. We also show that unless the acceptance probability is constant across databases, the runtime of a rejection sampler does not satisfy epsilon-DP for any epsilon. We show that there is a similar breakdown in privacy with adaptive rejection samplers. We propose three modifications to the rejection sampling algorithm, with varying assumptions, to protect against timing attacks by making the runtime independent of the data. The modification with the weakest assumptions is an approximate sampler, introducing a small increase in the privacy cost, whereas the other modifications give perfect samplers. We also use our techniques to develop an adaptive rejection sampler for log-Holder densities, which also has data-independent runtime. We give several examples of DP mechanisms that fit the assumptions of our methods and can thus be implemented using our samplers. 
    more » « less
  4. Website fingerprinting attacks, which use statistical analysis on network traffic to compromise user privacy, have been shown to be effective even if the traffic is sent over anonymity-preserving networks such as Tor. The classical attack model used to evaluate website fingerprinting attacks assumes an on-path adversary, who can observe all traffic traveling between the user’s computer and the secure network. In this work we investigate these attacks under a different attack model, in which the adversary is capable of sending a small amount of malicious JavaScript code to the target user’s computer. The malicious code mounts a cache side-channel attack, which exploits the effects of contention on the CPU’s cache, to identify other websites being browsed. The effectiveness of this attack scenario has never been systematically analyzed, especially in the open-world model which assumes that the user is visiting a mix of both sensitive and non-sensitive sites. We show that cache website fingerprinting attacks in JavaScript are highly feasible. Specifically, we use machine learning techniques to classify traces of cache activity. Unlike prior works, which try to identify cache conflicts, our work measures the overall occupancy of the last-level cache. We show that our approach achieves high classification accuracy in both the open-world and the closed-world models. We further show that our attack is more resistant than network-based fingerprinting to the effects of response caching, and that our techniques are resilient both to network-based defenses and to side-channel countermeasures introduced to modern browsers as a response to the Spectre attack. To protect against cache-based website fingerprinting, new defense mechanisms must be introduced to privacy-sensitive browsers and websites. We investigate one such mechanism, and show that generating artificial cache activity reduces the effectiveness of the attack and completely eliminates it when used in the Tor Browser 
    more » « less
  5. Motivated by the ever-increasing concerns on personal data privacy and the rapidly growing data volume at local clients, federated learning (FL) has emerged as a new machine learning setting. An FL system is comprised of a central parameter server and multiple local clients. It keeps data at local clients and learns a centralized model by sharing the model parameters learned locally. No local data needs to be shared, and privacy can be well protected. Nevertheless, since it is the model instead of the raw data that is shared, the system can be exposed to the poisoning model attacks launched by malicious clients. Furthermore, it is challenging to identify malicious clients since no local client data is available on the server. Besides, membership inference attacks can still be performed by using the uploaded model to estimate the client's local data, leading to privacy disclosure. In this work, we first propose a model update based federated averaging algorithm to defend against Byzantine attacks such as additive noise attacks and sign-flipping attacks. The individual client model initialization method is presented to provide further privacy protections from the membership inference attacks by hiding the individual local machine learning model. When combining these two schemes, privacy and security can be both effectively enhanced. The proposed schemes are proved to converge experimentally under non-lID data distribution when there are no attacks. Under Byzantine attacks, the proposed schemes perform much better than the classical model based FedAvg algorithm. 
    more » « less