skip to main content


Title: Frequency and Bandwidth Tunable mm-Wave Hairpin Bandpass Filters Using Microfluidic Reconfiguration With Integrated Actuation
Microfluidically reconfigurable radio-frequency (RF) devices in general have been found attractive for low-loss, wide-frequency tunability and high-power-handling capabilities. Recently, integrated actuation of the microfluidically reconfigurable devices has been proposed for compact mm-wave device applications. This article for the first time introduces microfluidically reconfigurable frequency- and/or bandwidthtunable bandpass filters (BPFs) operated at the mm-wave band with integrated actuation. The BPFs consist of coupled hairpin resonators. Frequency tuning is achieved by capacitively loading the resonators. Bandwidth tuning is achieved by creating varying capacitive loading among the resonators to control the interresonator couplings. The capacitive loading mechanisms are realized using the selectively metallized plates (SMPs) that can be repositioned within the microfluidic channels. The microfluidic channels are located directly above the stationary metallizations of the filter. Piezoelectric bending actuators placed under the filter’s ground plane provide the SMP motion capability. The BPFs perform with the worst-case insertion loss of 3.1 dB. Frequency-tuning capable filters operate within 28–38-GHz band. Fractional bandwidth tunability varies from 7.8% to 16.7% at 38 GHz and 7.6% to 12.5% at 28 GHz for the filter that is capable of both tuning mechanisms. The filters are characterized to handle 5 W of the continuous RF power without needing thick ground planes or heat sinks. In addition, the frequency-tuning speed is characterized to be 285 MHz/ms.  more » « less
Award ID(s):
1920926 1351557
NSF-PAR ID:
10186228
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IEEE Transactions on Microwave Theory and Techniques
Volume:
68
Issue:
9
ISSN:
0018-9480
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We report a novel approach for realizing tunable/reconfigurable terahertz (THz) mesh filters on the basis of micromachined mesa‐array structures. In this approach, different filter patterns are generated virtually using photogenerated free carriers in a semiconducting mesa‐array structure to achieve superior tunability and reconfigurability. Micromachined mesa‐array structures enable the formation of high fidelity, optically generated mesh filter structures for THz frequencies. To evaluate the proposed filter designs, the optically patterned spatial modulation properties of mesa‐array structures were first evaluated. Reconfigurable mesh filter prototypes were then designed and simulated using silicon mesa arrays with 50 × 50 μm2square mesa unit cells. Simulations show that reconfigurable bandpass filters (BPFs) operating in the frequency range of 108–489 GHz with insertion losses of 0.82–1.13 dB can be achieved. By employing smaller unit cells, the frequency tuning range and filtering performance can be further improved. In addition to BPFs, other filter functionalities can also be realized utilizing the proposed approach. The wide tuning range and reconfigurability of the mesh filters demonstrate that the proposed approach is promising for developing tunable/reconfigurable circuits and components for advanced THz sensing, imaging, and communications.

     
    more » « less
  2. The design of mixed-technology quasi-reflectionless planar bandpass filters (BPFs), bandstop filters (BSFs), and multi-band filters is reported. The proposed quasi-reflectionless filter architectures comprise a main filtering section that determines the power transmission response (bandpass, bandstop, or multi-band type) of the overall circuit network and auxiliary sections that absorb the reflected radio-frequency (RF) signal energy. By loading the input and output ports of the main filtering section with auxiliary filtering sections that exhibit a complementary transfer function with regard to the main one, a symmetric quasi-reflectionless behavior can be obtained at both accesses of the overall filter. The operating principles of the proposed filter concept are shown through synthesized first-order BPF and BSF designs. Selectivity-increase techniques are also described. They are based on: (i) cascading in-series multiple first-order stages and (ii) increasing the order of the filtering sections. Moreover, the RF design of quasi-reflectionless multi-band BPFs and BSFs is discussed. A hybrid integration scheme in which microstrip-type and lumped-elements are effectively combined within the filter volume is investigated for size miniaturization purposes. For experimental validation purposes, two quasi-reflectionless BPF prototypes (one- and two-stage architectures) centered at 2 GHz and a second-order BSF prototype centered at 1 GHz were designed, manufactured, and measured. 
    more » « less
  3. A coupling-matrix approach for the theoretical design of a type of input-reflectionless RF/microwave bandpass filters (BPFs) and bandstop filters (BSFs) is presented. They are based on diplexer architectures with arbitrary-order bandpass and bandstop filtering channels that feature complementary transfer functions. The transmission behavior of these reflectionless filters is defined by the channel that is not loaded at its output, whereas the input-signal energy that is not transmitted by this branch is completely dissipated by the loading resistor of the other channel. Analytical formulas for the coupling coefficients for the first-to-fourth-order filter designs are provided and validated through several synthesis examples. This theoretical design methodology, along with an optimization step, is also exploited to design input-quasi-reflectionless quasielliptic- type BPFs with a transmission-zero-(TZ)-generation cell in their bandpass filtering channel. In addition, the application of the proposed input-reflectionless BPF and BSF networks to input-quasi-reflectionless multiplexer design is approached. It is shown that a single resistively terminated multi-band BSF branch can absorb the input-signal energy not transmitted by the multiplexer channels in their common stopband regions to achieve quasi-reflectionless characteristics at its input. Moreover, experimental microstrip prototypes consisting of 2-GHz third-order BPF and BSF circuits, a 2-GHz sharp-rejection thirdorder BPF with two close-to-passband TZs, and a second-order diplexer device with channels centered at 1.75 and 2.1 GHz are developed and measured. 
    more » « less
  4. Abstract

    This work is on the design, fabrication and characterization of a hexagonal ferrite band-pass filter that can be tuned either with a magnetic field or an electric field. The filter operation is based on a straight-edge Y-type hexagonal ferrite resonator symmetrically coupled to the input and output microstrip transmission lines. The Zn2Yfilter demonstrated magnetic field tunability in the 8–12 GHz frequency range by applying an in-plane bias magnetic fieldH0provided by a built-in permanent magnet. The insertion loss and 3 dB bandwidth within this band were 8.6 ± 0.4 dB and 350 ± 40 MHz, respectively. The electric fieldEtunability of the pass-band of the device was facilitated by the nonlinear magnetoelectric effect (NLME) in the ferrite. TheE-tuning of the center frequency of the filter by (1150 ± 90) MHz was obtained for an input DC electric power of 200 mW. With efforts directed at a significant reduction in the insertion loss, the compact and power efficient magnetic and electric field tunable Zn2Y band-pass filter has the potential for use in novel reconfigurable RF/microwave devices and communication systems.

     
    more » « less
  5. This paper reports on quasi-elliptic dual-band bandpass filters (BPFs) that were designed for the Filter Student Design Competition of the 2019 European Microwave Week. The proposed lumped-element (LE) BPF concept is based on two dual-band transversal cells and one multi-resonant cell that allow the realization of symmetric and asymmetric dual-band transfer functions shaped by six poles and five transmission zeros. A compact implementation scheme based on LE series resonators is proposed for size compactness and wide spurious free out-of-band response. For proof-of-concept demonstration purposes, a dual-band LE prototype with two passbands centered 1 and 1.5 GHz was designed, manufactured, and measured. It exhibited the following radio frequency measured performance characteristics. Passbands centered at 1.02 and 1.45 GHz, minimum insertion loss levels of 2.0 and 2.7 dB, and bandwidth of 146 and 105 MHz, respectively, for the first and the second passband, and out-of-band rejection >30 dB between 0 and 894 MHz, 1.17–1.34 GHz, and 1.72–6.9 GHz. 
    more » « less