skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Synthesis of internally alkylated azuliporphyrins
Internally alkylated azuliporphyrins were prepared by two different MacDonald-type “3 + 1” routes from 2-alkylazulitripyrranes or an N-methyltripyrrane. These carbaporphyrinoids were isolated as dihydrochlorides and the free-base forms proved to be unstable. Insertion of palladium(II) into a 23-methylazuliporphyrin was primarily associated with loss of the internal alkyl group, although palladium(II) carbaporphyrin byproducts arising from ring contraction and alkyl group migration were also isolated and characterized.  more » « less
Award ID(s):
1855240
PAR ID:
10186544
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Porphyrins and Phthalocyanines
Volume:
24
Issue:
05n07
ISSN:
1088-4246
Page Range / eLocation ID:
817 to 829
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. cid catalyzed condensation of N-alkyltripyrranes with trialdehydes derived from 1,3-cyclopentadiene or methyl-1,3-cyclopentadiene, followed by oxidation with aqueous ferric chloride solutions, gave 23-alkyl-21- carbaporphyrin-2-carbaldehydes in 22−27% yield together with weakly aromatic oxycarbaporphyrins. The carbaporphyrins reacted with palladium(II) acetate or nickel(II) acetate to give organometallic complexes but in both cases alkyl group migration took place to generate 21-alkyl derivatives. Although this type of reactivity had been observed previously for palladium complexes, this is the first time the phenomenon has been seen in nickel(II) carbaporphyrins. Reactions with nickel(II) acetate in refluxing DMF for longer time periods primarily led to decomposition but unusual byproducts were identified. These could be obtained in higher yields by reacting the carbaporphyrin aldehydes with 5 equiv of (bis(trifluoroacetoxy)iodo)benzene in the presence of grade 3 alumina. Decarbonylation and oxidation generate a trioxocyclopentane moiety that is embedded in the porphyrinoid macrocycle. The new system has strongly aromatic properties that are evident from the proton NMR spectra, nucleus independent chemical shift (NICS) calculations and anisotropy of induced ring current plots. 
    more » « less
  2. The synthesis of a range of PBP supported palladium pincer complexes with different alkyl ligands is described. The rates of CO2insertion into the alkyl group are quantified and rationalized based on the identity of the alkyl ligand. 
    more » « less
  3. Abstract A mild visible light‐induced palladium‐catalyzed alkyl Heck reaction of diazo compounds andN‐tosylhydrazones is reported. A broad range of vinyl arenes and heteroarenes with high functional group tolerance, as well as a range of different diazo compounds, can efficiently undergo this transformation. This method features Brønsted acid‐assisted generation of hybrid palladium C(sp3)‐centered radical intermediate, which allowed for new selective C−H functionalization protocol. 
    more » « less
  4. Herein we report the palladium-catalyzed borylation of aryl halides (iodides or bromides) under base-free conditions utilizing a commercially available Lewis acidic mediator, Zn(OTf)2. Under these conditions, an array of electronically and functional group-diverse aryl iodides and bromides undergo borylation to afford the corresponding aryl boronic esters in up to 82% isolated yield. Mechanistic investigations are consistent with Zn(OTf)2 enabling transmetalation between a cationic Pd(II)-Ar intermediate and B2pin2 via halide abstraction. Furthermore, stabilization of the cationic [ArPdII]+ complex with added [BArF4]– significantly improves reaction efficiency with electron-poor arenes. 
    more » « less
  5. Alkyl boronic acids and esters are versatile synthetic intermediates that generally require several steps to synthesize. Three-component alkene arylboration reactions allow for the rapid synthesis of alkyl boronic esters. Herein, we report the base-free aerobic Pd-catalyzed three-component alkene arylboration, which allows direct access, in a single step, to alkyl boronic esters from readily available precursors: aryl boronic acids, alkenes, and bis(pinacol)diboron. This approach allows for the formal insertion of an alkene into an Ar–B bond, and thus, generates an alkyl boronic ester from an aryl boronic acid. The reaction proceeds with both electron-rich and electron-deficient aryl boronic acids as well as strained cyclic, internal, and terminal olefins. The reactions are regioselective: 1,2-arylboration products are formed with strained cyclic alkenes and b-alkyl-styrenes while 1,1-arylboration products are generated from terminal alkenes. Forty-five examples are presented with isolated yields of the resulting alkyl boronic esters ranging from 20-74%, along with several examples demonstrating the synthetic utility of the products. Mechanistic investigations support that the catalytic cycle occurs through direct arylboration of the alkene. Further, p-benzyl intermediates form when possible, and the rate of borylation is increased with electron-rich arenes relative to electron-poor. Finally, we demonstrate that aryl boroxines, generated in situ, are essential for the transformation as they rapidly undergo base-free transmetalation with the proposed palladium peroxo intermediate. 
    more » « less