Abstract BackgroundNew patient referrals are often processed by practice coordinators with little‐to‐no medical background. Treatment delays due to incorrect referral processing, however, have detrimental consequences. Identifying variables that are associated with a higher likelihood of surgical oncological resection may improve patient referral processing and expedite the time to treatment. The study objective is to develop a supervised machine learning (ML) platform that identifies relevant variables associated with head and neck surgical resection. MethodsA retrospective cohort study was conducted on 64 222 patient datapoints from the SEER database. ResultsThe random forest ML model correctly classified patients who were offered head and neck surgery with an 81% accuracy rate. The sensitivity and specificity rates were 86% and 71%. The positive and negative predictive values were 85% and 73%. ConclusionsML modeling accurately predicts head and neck cancer surgery recommendations based on patient and cancer information from a large population‐based dataset. ML adjuncts for referral processing may decrease the time to treatment for patients with cancer.
more »
« less
Prescriptive Analytics for Reducing 30-day Hospital Readmissions after General Surgery
Introduction: New financial incentives, such as reduced Medicare reimbursements, have led hospitals to closely monitor their readmission rates and initiate efforts aimed at reducing them. In this context, many surgical departments participate in the American College of Surgeons National Surgical Quality Improvement Program (NSQIP), which collects detailed demographic, laboratory, clinical, procedure and perioperative occurrence data. The availability of such data enables the development of data science methods which predict readmissions and, as done in this paper, offer specific recommendations aimed at preventing readmissions. Materials and Methods: This study leverages NSQIP data for 722,101 surgeries to develop predictive and prescriptive models, predicting readmissions and offering real-time, personalized treatment recommendations for surgical patients during their hospital stay, aimed at reducing the risk of a 30-day readmission. We applied a variety of classification methods to predict 30-day readmissions and developed two prescriptive methods to recommend pre-operative blood transfusions to increase the patient’s hematocrit with the objective of preventing readmissions. The effect of these interventions was evaluated using several predictive models. Results: Predictions of 30-day readmissions based on the entire collection of NSQIP variables achieve an out-of-sample accuracy of 87% (Area Under the Curve—AUC). Predictions based only on pre-operative variables have an accuracy of 74% AUC, out-of-sample. Personalized interventions, in the form of pre-operative blood transfusions identified by the prescriptive methods, reduce readmissions by 12%, on average, for patients considered as candidates for pre-operative transfusion (pre-operative hematoctic <30). The prediction accuracy of the proposed models exceeds results in the literature. Conclusions: This study is among the first to develop a methodology for making specific, data-driven, personalized treatment recommendations to reduce the 30-day readmission rate. The reported predicted reduction in readmissions can lead to more than $20 million in savings in the U.S. annually.
more »
« less
- PAR ID:
- 10186569
- Date Published:
- Journal Name:
- PloS one
- ISSN:
- 1932-6203
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Background Despite favorable outcomes of surgical pulmonary artery (PA) reconstruction, isolated proximal stenting of the central PAs is common clinical practice for patients with peripheral PA stenosis in association with Williams and Alagille syndromes. Given the technical challenges of PA reconstruction and the morbidities associated with transcatheter interventions, the hemodynamic consequences of all treatment strategies must be rigorously assessed. Our study aims to model, assess, and predict hemodynamic outcomes of transcatheter interventions in these patients. Methods and Results Isolated proximal and “extensive” interventions (stenting and/or balloon angioplasty of proximal and lobar vessels) were performed in silico on 6 patient‐specific PA models. Autoregulatory adaptation of the cardiac output and downstream arterial resistance was modeled in response to intervention‐induced hemodynamic perturbations. Postintervention computational fluid dynamics predictions were validated in 2 stented patients and quantitatively assessed in 4 surgical patients. Our computational methods accurately predicted postinterventional PA pressures, the primary indicators of success for treatment of peripheral PA stenosis. Proximal and extensive treatment achieved median reductions of 14% and 40% in main PA systolic pressure, 27% and 56% in pulmonary vascular resistance, and 10% and 45% in right ventricular stroke work, respectively. Conclusions In patients with Williams and Alagille syndromes, extensive transcatheter intervention is required to sufficiently reduce PA pressures and right ventricular stroke work. Transcatheter therapy was shown to be ineffective for long‐segment stenosis and pales hemodynamically in comparison with published outcomes of surgical reconstruction. Regardless of the chosen strategy, a virtual treatment planning platform could identify lesions most critical for optimizing right ventricular afterload.more » « less
-
Electronic health records (EHRs) have been heavily used in modern healthcare systems for recording patients' admission information to health facilities. Many data-driven approaches employ temporal features in EHR for predicting specific diseases, readmission times, and diagnoses of patients. However, most existing predictive models cannot fully utilize EHR data, due to an inherent lack of labels in supervised training for some temporal events. Moreover, it is hard for the existing methods to simultaneously provide generic and personalized interpretability. To address these challenges, we propose Sherbet, a self-supervised graph learning framework with hyperbolic embeddings for temporal health event prediction. We first propose a hyperbolic embedding method with information flow to pretrain medical code representations in a hierarchical structure. We incorporate these pretrained representations into a graph neural network (GNN) to detect disease complications and design a multilevel attention method to compute the contributions of particular diseases and admissions, thus enhancing personalized interpretability. We present a new hierarchy-enhanced historical prediction proxy task in our self-supervised learning framework to fully utilize EHR data and exploit medical domain knowledge. We conduct a comprehensive set of experiments on widely used publicly available EHR datasets to verify the effectiveness of our model. Our results demonstrate the proposed model's strengths in both predictive tasks and interpretable abilities.more » « less
-
null (Ed.)The unprecedented shock caused by the COVID-19 pandemic has severely influenced the delivery of regular healthcare services. Most non-urgent medical activities, including elective surgeries, have been paused to mitigate the risk of infection and to dedicate medical resources to managing the pandemic. In this regard, not only surgeries are substantially influenced, but also pre- and post-operative assessment of patients and training for surgical procedures have been significantly impacted due to the pandemic. Many countries are planning a phased reopening, which includes the resumption of some surgical procedures. However, it is not clear how the reopening safe-practice guidelines will impact the quality of healthcare delivery. This perspective article evaluates the use of robotics and AI in 1) robotics-assisted surgery, 2) tele-examination of patients for pre- and post-surgery, and 3) tele-training for surgical procedures. Surgeons interact with a large number of staff and patients on a daily basis. Thus, the risk of infection transmission between them raises concerns. In addition, pre- and post-operative assessment also raises concerns about increasing the risk of disease transmission, in particular, since many patients may have other underlying conditions, which can increase their chances of mortality due to the virus. The pandemic has also limited the time and access that trainee surgeons have for training in the OR and/or in the presence of an expert. In this article, we describe existing challenges and possible solutions and suggest future research directions that may be relevant for robotics and AI in addressing the three tasks mentioned above.more » « less
-
Abstract Background Predictive models utilizing social determinants of health (SDH), demographic data, and local weather data were trained to predict missed imaging appointments (MIA) among breast imaging patients at the Boston Medical Center (BMC). Patients were characterized by many different variables, including social needs, demographics, imaging utilization, appointment features, and weather conditions on the date of the appointment. Methods This HIPAA compliant retrospective cohort study was IRB approved. Informed consent was waived. After data preprocessing steps, the dataset contained 9,970 patients and 36,606 appointments from 1/1/2015 to 12/31/2019. We identified 57 potentially impactful variables used in the initial prediction model and assessed each patient for MIA. We then developed a parsimonious model via recursive feature elimination, which identified the 25 most predictive variables. We utilized linear and non-linear models including support vector machines (SVM), logistic regression (LR), and random forest (RF) to predict MIA and compared their performance. Results The highest-performing full model is the nonlinear RF, achieving the highest Area Under the ROC Curve (AUC) of 76% and average F1 score of 85%. Models limited to the most predictive variables were able to attain AUC and F1 scores comparable to models with all variables included. The variables most predictive of missed appointments included timing, prior appointment history, referral department of origin, and socioeconomic factors such as household income and access to caregiving services. Conclusions Prediction of MIA with the data available is inherently limited by the complex, multifactorial nature of MIA. However, the algorithms presented achieved acceptable performance and demonstrated that socioeconomic factors were useful predictors of MIA. In contrast with non-modifiable demographic factors, we can address SDH to decrease the incidence of MIA.more » « less