skip to main content


Title: Uncertainty-Aware Opinion Inference Under Adversarial Attacks
Inference of unknown opinions with uncertain, adversarial (e.g., incorrect or conflicting) evidence in large datasets is not a trivial task. Without proper handling, it can easily mislead decision making in data mining tasks. In this work, we propose a highly scalable opinion inference probabilistic model, namely Adversarial Collective Opinion Inference (Adv-COI), which provides a solution to infer unknown opinions with high scalability and robustness under the presence of uncertain, adversarial evidence by enhancing Collective Subjective Logic (CSL) which is developed by combining SL and Probabilistic Soft Logic (PSL). The key idea behind the Adv-COI is to learn a model of robust ways against uncertain, adversarial evidence which is formulated as a min-max problem. We validate the out-performance of the Adv-COI compared to baseline models and its competitive counterparts under possible adversarial attacks on the logic-rule based structured data and white and black box adversarial attacks under both clean and perturbed semi-synthetic and real-world datasets in three real world applications. The results show that the Adv-COI generates the lowest mean absolute error in the expected truth probability while producing the lowest running time among all.  more » « less
Award ID(s):
1954409
NSF-PAR ID:
10187143
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2019 IEEE International Conference on Big Data (Big Data)
Page Range / eLocation ID:
6 to 15
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Using unreliable information sources generating conflicting evidence may lead to a large uncertainty, which significantly hurts the decision making process. Recently, many approaches have been taken to integrate conflicting data from multiple sources and/or fusing conflicting opinions from different entities. To explicitly deal with uncertainty, a belief model called Subjective Logic (SL), as a variant of Dumpster-Shafer Theory, has been proposed to represent subjective opinions and to merge multiple opinions by offering a rich volume of fusing operators, which have been used to solve many opinion inference problems in trust networks. However, the operators of SL are known to be lack of scalability in inferring unknown opinions from large network data as a result of the sequential procedures of merging multiple opinions. In addition, SL does not consider deriving opinions in the presence of conflicting evidence. In this work, we propose a hybrid inference method that combines SL and Probabilistic Soft Logic (PSL), namely, Collective Subjective Plus, CSL + , which is resistible to highly conflicting evidence or a lack of evidence. PSL can reason a belief in a collective manner to deal with large-scale network data, allowing high scalability based on relationships between opinions. However, PSL does not consider an uncertainty dimension in a subjective opinion. To take benefits from both SL and PSL, we proposed a hybrid approach called CSL + for achieving high scalability and high prediction accuracy for unknown opinions with uncertainty derived from a lack of evidence and/or conflicting evidence. Through the extensive experiments on four semi-synthetic and two real-world datasets, we showed that the CSL + outperforms the state-of-the-art belief model (i.e., SL), probabilistic inference models (i.e., PSL, CSL), and deep learning model (i.e., GCN-VAE-opinion) in terms of prediction accuracy, computational complexity, and real running time. 
    more » « less
  2. null (Ed.)
    Traditional deep neural networks (NNs) have significantly contributed to the state-of-the-art performance in the task of classification under various application domains. However, NNs have not considered inherent uncertainty in data associated with the class probabilities where misclassification under uncertainty may easily introduce high risk in decision making in real-world contexts (e.g., misclassification of objects in roads leads to serious accidents). Unlike Bayesian NN that indirectly infer uncertainty through weight uncertainties, evidential NNs (ENNs) have been recently proposed to explicitly model the uncertainty of class probabilities and use them for classification tasks. An ENN offers the formulation of the predictions of NNs as subjective opinions and learns the function by collecting an amount of evidence that can form the subjective opinions by a deterministic NN from data. However, the ENN is trained as a black box without explicitly considering inherent uncertainty in data with their different root causes, such as vacuity (i.e., uncertainty due to a lack of evidence) or dissonance (i.e., uncertainty due to conflicting evidence). By considering the multidimensional uncertainty, we proposed a novel uncertainty-aware evidential NN called WGAN-ENN (WENN) for solving an out-of-distribution (OOD) detection problem. We took a hybrid approach that combines Wasserstein Generative Adversarial Network (WGAN) with ENNs to jointly train a model with prior knowledge of a certain class, which has high vacuity for OOD samples. Via extensive empirical experiments based on both synthetic and real-world datasets, we demonstrated that the estimation of uncertainty by WENN can significantly help distinguish OOD samples from boundary samples. WENN outperformed in OOD detection when compared with other competitive counterparts 
    more » « less
  3. The pervasiveness of neural networks (NNs) in critical computer vision and image processing applications makes them very attractive for adversarial manipulation. A large body of existing research thoroughly investigates two broad categories of attacks targeting the integrity of NN models. The first category of attacks, commonly called Adversarial Examples, perturbs the model's inference by carefully adding noise into input examples. In the second category of attacks, adversaries try to manipulate the model during the training process by implanting Trojan backdoors. Researchers show that such attacks pose severe threats to the growing applications of NNs and propose several defenses against each attack type individually. However, such one-sided defense approaches leave potentially unknown risks in real-world scenarios when an adversary can unify different attacks to create new and more lethal ones bypassing existing defenses. In this work, we show how to jointly exploit adversarial perturbation and model poisoning vulnerabilities to practically launch a new stealthy attack, dubbed AdvTrojan. AdvTrojan is stealthy because it can be activated only when: 1) a carefully crafted adversarial perturbation is injected into the input examples during inference, and 2) a Trojan backdoor is implanted during the training process of the model. We leverage adversarial noise in the input space to move Trojan-infected examples across the model decision boundary, making it difficult to detect. The stealthiness behavior of AdvTrojan fools the users into accidentally trusting the infected model as a robust classifier against adversarial examples. AdvTrojan can be implemented by only poisoning the training data similar to conventional Trojan backdoor attacks. Our thorough analysis and extensive experiments on several benchmark datasets show that AdvTrojan can bypass existing defenses with a success rate close to 100% in most of our experimental scenarios and can be extended to attack federated learning as well as high-resolution images. 
    more » « less
  4. Deep Neural Networks (DNN) are vulnerable to adversarial perturbations — small changes crafted deliberately on the input to mislead the model for wrong predictions. Adversarial attacks have disastrous consequences for deep learning empowered critical applications. Existing defense and detection techniques both require extensive knowledge of the model, testing inputs and even execution details. They are not viable for general deep learning implementations where the model internal is unknown, a common ‘black-box’ scenario for model users. Inspired by the fact that electromagnetic (EM) emanations of a model inference are dependent on both operations and data and may contain footprints of different input classes, we propose a framework, EMShepherd, to capture EM traces of model execution, perform processing on traces and exploit them for adversarial detection. Only benign samples and their EM traces are used to train the adversarial detector: a set of EM classifiers and class-specific unsupervised anomaly detectors. When the victim model system is under attack by an adversarial example, the model execution will be different from executions for the known classes, and the EM trace will be different. We demonstrate that our air-gapped EMShepherd can effectively detect different adversarial attacks on a commonly used FPGA deep learning accelerator for both Fashion MNIST and CIFAR-10 datasets. It achieves a detection rate on most types of adversarial samples, which is comparable to the state-of-the-art ‘white-box’ software-based detectors. 
    more » « less
  5. One of the challenging problems in large scale cyber-argumentation platforms is that users often engage and focus only on a few issues and leave other issues under-discussed and under-acknowledged. This kind of non-uniform participation obstructs the argumentation analysis models to retrieve collective intelligence from the underlying discussion. To resolve this problem, we developed an innovative opinion prediction model for a multi-issue cyber-argumentation environment. Our model predicts users’ opinions on the non-participated issues from similar users’ opinions on related issues using intelligent argumentation techniques and a collaborative filtering method. Based on our detailed experimental results on an empirical dataset collected using our cyber-argumentation platform, our model is 21.7% more accurate, handles data sparsity better than other popular opinion prediction methods. Our model can also predict opinions on multiple issues simultaneously with reasonable accuracy. Contrary to existing opinion prediction models, which only predict whether a user agrees on an issue, our model predicts how much a user agrees on the issue. To our knowledge, this is the first research to attempt multi-issue opinion prediction with the partial agreement in the cyber-argumentation platform. With additional data on non-participated issues, our opinion prediction model can help the collective intelligence analysis models to analyze social phenomena more effectively and accurately in the cyber argumentation platform. 
    more » « less