Abstract There are only a few examples of nanocrystal synthesis with thallium (Tl). Here, we report the synthesis of uniform, ligand‐stabilized colloidal nanocrystals of TlBr and Tl2AgBr3nanocrystals with average diameter ranging between 10 and 20 nm. TlBr nanocrystals are made by hot injection of trimethylsilyl bromide (TMSBr) into solutions of oleylamine, oleic acid and octadecene with thallium (III) or thallium (I) acetate. Tl2AgBr3nanocrystals form when silver (I) acetate is included in the reaction. The TlBr nanocrystals have CsCl crystal structure with a direct band gap of 3.1 eV. The Tl2AgBr3nanocrystals have trigonal dolomite crystal structure with an indirect band gap of 3.1 eV. The TlBr nanocrystals made with thallium (III) were sufficiently uniform to assemble into face‐centered cubic (fcc) superlattices.
more »
« less
Colloidal nanocrystal superlattices as phononic crystals: plane wave expansion modeling of phonon band structure
Colloidal nanocrystals consist of an inorganic crystalline core with organic ligands bound to the surface and naturally self-assemble into periodic arrays known as superlattices. This periodic structure makes superlattices promising for phononic crystal applications. To explore this potential, we use plane wave expansion methods to model the phonon band structure. We find that the nanoscale periodicity of these superlattices yield phononic band gaps with very high center frequencies on the order of 10 2 GHz. We also find that the large acoustic contrast between the hard nanocrystal cores and the soft ligand matrix lead to very large phononic band gap widths on the order of 10 1 GHz. We systematically vary nanocrystal core diameter, d , nanocrystal core elastic modulus, E NC core , interparticle distance ( i.e. ligand length), L , and ligand elastic modulus, E ligand , and report on the corresponding effects on the phonon band structure. Our modeling shows that the band gap center frequency increases as d and L are decreased, or as E NC core and E ligand are increased. The band gap width behaves non-monotonically with d , L , E NC core , and E ligand , and intercoupling of these variables can eliminate the band gap. Lastly, we observe multiple phononic band gaps in many superlattices and find a correlation between an increase in the number of band gaps and increases in d and E NC core . We find that increases in the property mismatch between phononic crystal components ( i.e. d / L and E NC core / E ligand ) flattens the phonon branches and are a key driver in increasing the number of phononic band gaps. Our predicted phononic band gap center frequencies and widths far exceed those in current experimental demonstrations of 3-dimensional phononic crystals. This suggests that colloidal nanocrystal superlattices are promising candidates for use in high frequency phononic crystal applications.
more »
« less
- Award ID(s):
- 1227979
- PAR ID:
- 10188017
- Date Published:
- Journal Name:
- RSC Advances
- Volume:
- 6
- Issue:
- 50
- ISSN:
- 2046-2069
- Page Range / eLocation ID:
- 44578 to 44587
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Analytic representation formulas and power series are developed to describe the band struc- ture inside periodic elastic crystals made from high contrast inclusions. We use source free modes associated with structural spectra to represent the solution operator of the Lam ́e system inside phononic crystals. Convergent power series for the Bloch wave spectrum are obtained using the representation formulas. An explicit bound on the convergence radius is given through the structural spectra of the inclusion array and the Dirichlet spectra of the inclusions. Suffi- cient conditions for the separation of spectral branches of the dispersion relation for any fixed quasi-momentum are identified. A condition is found that is sufficient for the emergence of band gaps.more » « less
-
Manipulations of nanocrystal (NC) surfaces have propelled the applications of colloidal NCs across various fields such as bioimaging, catalysis, electronics, and sensing applications. In this Feature Article, we discuss the surface chemistry of colloidal NCs, with an emphasis on semiconductor quantum dots, and the binding motifs for various ligands that coordinate NC surfaces. We present isothermal titration calorimetry (ITC) as a viable technique for studying the thermodynamics of the ligand association and exchange at NC surfaces by discussing its principles of operation and highlighting results obtained to date. We give an in-depth description of various thermodynamic models that can be used to interpret NC–ligand interactions as measured not only by ITC, but also by NMR, fluorescence quenching, and fluorescence anisotropy techniques. Understanding the complexity of NC surface–ligand interactions can provide a wide range of avenues to tune their properties for desired applications.more » « less
-
A spatially periodic structure of heterogeneous elastic rods that periodically oscillate along their axes is proposed as a time-modulated phononic crystal. Each rod is a bi-material cylinder, consisting of periodically distributed slices with significantly different elastic properties. The rods are imbedded in an elastic matrix. Using a plane wave expansion, it is shown that the dispersion equation for sound waves is obtained from the solutions of a quadratic eigenvalue problem over the eigenfrequency ω. The coefficients of the corresponding quadratic polynomial are represented by infinite matrices defined in the space spanned by the reciprocal lattice vectors, where elements depend on the velocity of translation motion of the rods and Bloch vector k. The calculated band structure exhibits both ω and k bandgaps. If a frequency gap overlaps with a momentum gap, a mixed gap is formed. Within a mixed gap, ω and k acquire imaginary parts. A method of analysis of the dispersion equation in complex ω−k space is proposed. As a result of the high elastic contrast between the materials in the bi-material rods, a substantial depth of modulation is achieved, leading to a large gap to midgap ratio for the frequency, momentum, and mixed bandgaps.more » « less
-
Abstract The ongoing interest in colloidal nanocrystal solids for electronic and photonic devices necessitates that their thermal‐transport properties be well understood because heat dissipation frequently limits performance in these devices. Unfortunately, colloidal nanocrystal solids generally possess very low thermal conductivities. This very low thermal conductivity primarily results from the weak van der Waals interaction between the ligands of adjacent nanocrystals. We overcome this thermal‐transport bottleneck by crosslinking the ligands to exchange a weak van der Waals interaction with a strong covalent bond. We obtain thermal conductivities of up to 1.7 Wm−1 K−1that exceed prior reported values by a factor of 4. This improvement is significant because the entire range of prior reported values themselves only span a factor of 4 (i.e., 0.1–0.4 Wm−1 K−1). We complement our thermal‐conductivity measurements with mechanical nanoindentation measurements that demonstrate ligand crosslinking increases Young's modulus and sound velocity. This increase in sound velocity is a key bridge between mechanical and thermal properties because sound velocity and thermal conductivity are linearly proportional according to kinetic theory. Control experiments with non‐crosslinkable ligands, as well as transport modeling, further confirm that ligand crosslinking boosts thermal transport.more » « less
An official website of the United States government

