skip to main content


Title: Almost Mathieu operators with completely resonant phases
Let $\unicode[STIX]{x1D6FC}\in \mathbb{R}\backslash \mathbb{Q}$ and $\unicode[STIX]{x1D6FD}(\unicode[STIX]{x1D6FC})=\limsup _{n\rightarrow \infty }(\ln q_{n+1})/q_{n}<\infty$ , where $p_{n}/q_{n}$ is the continued fraction approximation to $\unicode[STIX]{x1D6FC}$ . Let $(H_{\unicode[STIX]{x1D706},\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D703}}u)(n)=u(n+1)+u(n-1)+2\unicode[STIX]{x1D706}\cos 2\unicode[STIX]{x1D70B}(\unicode[STIX]{x1D703}+n\unicode[STIX]{x1D6FC})u(n)$ be the almost Mathieu operator on $\ell ^{2}(\mathbb{Z})$ , where $\unicode[STIX]{x1D706},\unicode[STIX]{x1D703}\in \mathbb{R}$ . Avila and Jitomirskaya [The ten Martini problem. Ann. of Math. (2), 170 (1) (2009), 303–342] conjectured that, for $2\unicode[STIX]{x1D703}\in \unicode[STIX]{x1D6FC}\mathbb{Z}+\mathbb{Z}$ , $H_{\unicode[STIX]{x1D706},\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D703}}$ satisfies Anderson localization if $|\unicode[STIX]{x1D706}|>e^{2\unicode[STIX]{x1D6FD}(\unicode[STIX]{x1D6FC})}$ . In this paper, we develop a method to treat simultaneous frequency and phase resonances and obtain that, for $2\unicode[STIX]{x1D703}\in \unicode[STIX]{x1D6FC}\mathbb{Z}+\mathbb{Z}$ , $H_{\unicode[STIX]{x1D706},\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D703}}$ satisfies Anderson localization if $|\unicode[STIX]{x1D706}|>e^{3\unicode[STIX]{x1D6FD}(\unicode[STIX]{x1D6FC})}$ .  more » « less
Award ID(s):
1700314
NSF-PAR ID:
10188089
Author(s) / Creator(s):
Date Published:
Journal Name:
Ergodic Theory and Dynamical Systems
Volume:
40
Issue:
7
ISSN:
0143-3857
Page Range / eLocation ID:
1875 to 1893
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. For each $t\in \mathbb{R}$ , we define the entire function $$\begin{eqnarray}H_{t}(z):=\int _{0}^{\infty }e^{tu^{2}}\unicode[STIX]{x1D6F7}(u)\cos (zu)\,du,\end{eqnarray}$$ where $\unicode[STIX]{x1D6F7}$ is the super-exponentially decaying function $$\begin{eqnarray}\unicode[STIX]{x1D6F7}(u):=\mathop{\sum }_{n=1}^{\infty }(2\unicode[STIX]{x1D70B}^{2}n^{4}e^{9u}-3\unicode[STIX]{x1D70B}n^{2}e^{5u})\exp (-\unicode[STIX]{x1D70B}n^{2}e^{4u}).\end{eqnarray}$$ Newman showed that there exists a finite constant $\unicode[STIX]{x1D6EC}$ (the de Bruijn–Newman constant ) such that the zeros of $H_{t}$ are all real precisely when $t\geqslant \unicode[STIX]{x1D6EC}$ . The Riemann hypothesis is equivalent to the assertion $\unicode[STIX]{x1D6EC}\leqslant 0$ , and Newman conjectured the complementary bound $\unicode[STIX]{x1D6EC}\geqslant 0$ . In this paper, we establish Newman’s conjecture. The argument proceeds by assuming for contradiction that $\unicode[STIX]{x1D6EC}<0$ and then analyzing the dynamics of zeros of $H_{t}$ (building on the work of Csordas, Smith and Varga) to obtain increasingly strong control on the zeros of $H_{t}$ in the range $\unicode[STIX]{x1D6EC} more » « less
  2. null (Ed.)
    Abstract Let $K$ be an algebraically closed field of prime characteristic $p$ , let $X$ be a semiabelian variety defined over a finite subfield of $K$ , let $\unicode[STIX]{x1D6F7}:X\longrightarrow X$ be a regular self-map defined over $K$ , let $V\subset X$ be a subvariety defined over $K$ , and let $\unicode[STIX]{x1D6FC}\in X(K)$ . The dynamical Mordell–Lang conjecture in characteristic $p$ predicts that the set $S=\{n\in \mathbb{N}:\unicode[STIX]{x1D6F7}^{n}(\unicode[STIX]{x1D6FC})\in V\}$ is a union of finitely many arithmetic progressions, along with finitely many $p$ -sets, which are sets of the form $\{\sum _{i=1}^{m}c_{i}p^{k_{i}n_{i}}:n_{i}\in \mathbb{N}\}$ for some $m\in \mathbb{N}$ , some rational numbers $c_{i}$ and some non-negative integers $k_{i}$ . We prove that this conjecture is equivalent with some difficult diophantine problem in characteristic 0. In the case $X$ is an algebraic torus, we can prove the conjecture in two cases: either when $\dim (V)\leqslant 2$ , or when no iterate of $\unicode[STIX]{x1D6F7}$ is a group endomorphism which induces the action of a power of the Frobenius on a positive dimensional algebraic subgroup of $X$ . We end by proving that Vojta’s conjecture implies the dynamical Mordell–Lang conjecture for tori with no restriction. 
    more » « less
  3. In this paper, we study the mixed Littlewood conjecture with pseudo-absolute values. For any pseudo-absolute-value sequence ${\mathcal{D}}$ , we obtain a sharp criterion such that for almost every $\unicode[STIX]{x1D6FC}$ the inequality $$\begin{eqnarray}|n|_{{\mathcal{D}}}|n\unicode[STIX]{x1D6FC}-p|\leq \unicode[STIX]{x1D713}(n)\end{eqnarray}$$ has infinitely many coprime solutions $(n,p)\in \mathbb{N}\times \mathbb{Z}$ for a certain one-parameter family of $\unicode[STIX]{x1D713}$ . Also, under a minor condition on pseudo-absolute-value sequences ${\mathcal{D}}_{1},{\mathcal{D}}_{2},\ldots ,{\mathcal{D}}_{k}$ , we obtain a sharp criterion on a general sequence $\unicode[STIX]{x1D713}(n)$ such that for almost every $\unicode[STIX]{x1D6FC}$ the inequality $$\begin{eqnarray}|n|_{{\mathcal{D}}_{1}}|n|_{{\mathcal{D}}_{2}}\cdots |n|_{{\mathcal{D}}_{k}}|n\unicode[STIX]{x1D6FC}-p|\leq \unicode[STIX]{x1D713}(n)\end{eqnarray}$$ has infinitely many coprime solutions $(n,p)\in \mathbb{N}\times \mathbb{Z}$ . 
    more » « less
  4. Let $f\in C^{2}(\mathbb{T}^{2})$ have mean value 0 and consider $$\begin{eqnarray}\sup _{\unicode[STIX]{x1D6FE}\,\text{closed geodesic}}\frac{1}{|\unicode[STIX]{x1D6FE}|}\biggl|\int _{\unicode[STIX]{x1D6FE}}f\,d{\mathcal{H}}^{1}\biggr|,\end{eqnarray}$$ where $\unicode[STIX]{x1D6FE}$ ranges over all closed geodesics $\unicode[STIX]{x1D6FE}:\mathbb{S}^{1}\rightarrow \mathbb{T}^{2}$ and $|\unicode[STIX]{x1D6FE}|$ denotes its length. We prove that this supremum is always attained. Moreover, we can bound the length of the geodesic $\unicode[STIX]{x1D6FE}$ attaining the supremum in terms of the smoothness of the function: for all $s\geq 2$ , $$\begin{eqnarray}|\unicode[STIX]{x1D6FE}|^{s}{\lesssim}_{s}\biggl(\max _{|\unicode[STIX]{x1D6FC}|=s}\Vert \unicode[STIX]{x2202}_{\unicode[STIX]{x1D6FC}}f\Vert _{L^{1}(\mathbb{T}^{2})}\biggr)\Vert \unicode[STIX]{x1D6FB}f\Vert _{L^{2}}\Vert f\Vert _{L^{2}}^{-2}.\end{eqnarray}$$ 
    more » « less
  5. Abstract Let Ω ⊂ ℝ n + 1 {\Omega\subset\mathbb{R}^{n+1}} , n ≥ 2 {n\geq 2} , be a 1-sided non-tangentially accessible domain (aka uniform domain), that is, Ω satisfies the interior Corkscrew and Harnack chain conditions, which are respectively scale-invariant/quantitative versions of openness and path-connectedness. Let us assume also that Ω satisfies the so-called capacity density condition, a quantitative version of the fact that all boundary points are Wiener regular. Consider L 0 ⁢ u = - div ⁢ ( A 0 ⁢ ∇ ⁡ u ) {L_{0}u=-\mathrm{div}(A_{0}\nabla u)} , L ⁢ u = - div ⁢ ( A ⁢ ∇ ⁡ u ) {Lu=-\mathrm{div}(A\nabla u)} , two real (non-necessarily symmetric) uniformly elliptic operators in Ω, and write ω L 0 {\omega_{L_{0}}} , ω L {\omega_{L}} for the respective associated elliptic measures. The goal of this program is to find sufficient conditions guaranteeing that ω L {\omega_{L}} satisfies an A ∞ {A_{\infty}} -condition or a RH q {\mathrm{RH}_{q}} -condition with respect to ω L 0 {\omega_{L_{0}}} . In this paper we establish that if the discrepancy of the two matrices satisfies a natural Carleson measure condition with respect to ω L 0 {\omega_{L_{0}}} , then ω L ∈ A ∞ ⁢ ( ω L 0 ) {\omega_{L}\in A_{\infty}(\omega_{L_{0}})} . Additionally, we can prove that ω L ∈ RH q ⁢ ( ω L 0 ) {\omega_{L}\in\mathrm{RH}_{q}(\omega_{L_{0}})} for some specific q ∈ ( 1 , ∞ ) {q\in(1,\infty)} , by assuming that such Carleson condition holds with a sufficiently small constant. This “small constant” case extends previous work of Fefferman–Kenig–Pipher and Milakis–Pipher together with the last author of the present paper who considered symmetric operators in Lipschitz and bounded chord-arc domains, respectively. Here we go beyond those settings, our domains satisfy a capacity density condition which is much weaker than the existence of exterior Corkscrew balls. Moreover, their boundaries need not be Ahlfors regular and the restriction of the n -dimensional Hausdorff measure to the boundary could be even locally infinite. The “large constant” case, that is, the one on which we just assume that the discrepancy of the two matrices satisfies a Carleson measure condition, is new even in the case of nice domains (such as the unit ball, the upper-half space, or non-tangentially accessible domains) and in the case of symmetric operators. We emphasize that our results hold in the absence of a nice surface measure: all the analysis is done with the underlying measure ω L 0 {\omega_{L_{0}}} , which behaves well in the scenarios we are considering. When particularized to the setting of Lipschitz, chord-arc, or 1-sided chord-arc domains, our methods allow us to immediately recover a number of existing perturbation results as well as extend some of them. 
    more » « less