Reported here are the findings of a comparative study on the effects of using a Socratic Intelligent Tutoring System for source code comprehension and learning computer programming. The result shows there are significant differences between the two groups where students who used Socratic Tutor ITS improved their knowledge by 45% in term of learning gain, developed a better understanding of concepts such as nested if-else and for loop, and improved their confidence level by 13%. Furthermore, the result of the Pearson product-moment correlation coefficient shows a positive correlation (r = 0.68) between feedback from the ITS and learning gain.
more »
« less
A Socratic Tutor for Source Code Comprehension
Reported here are the findings of a comparative study on the effects of using a Socratic Intelligent Tutoring System for source code comprehension and learning computer programming. The result shows there are significant differences between the two groups where students who used Socratic Tutor ITS improved their knowledge by 45% in term of learning gain, developed a better understanding of concepts such as nested if-else and for loop, and improved their confidence level by 13%. Furthermore, the result of the Pearson product-moment correlation coefficient shows a positive correlation (r = 0.68) between feedback from the ITS and learning gain.
more »
« less
- Award ID(s):
- 1822816
- PAR ID:
- 10188360
- Date Published:
- Journal Name:
- n Proceedings of the International Conference on Artificial Intelligence in Education
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)We present in this paper the results of a randomized control trial experiment that compared the effectiveness of two instructional strategies that scaffold learners' code comprehension processes: eliciting Free Self-Explanation and a Socratic Method. Code comprehension, i.e., understanding source code, is a critical skill for both learners and professionals. Improving learners' code comprehension skills should result in improved learning which in turn should help with retention in intro-to-programming courses which are notorious for suffering from very high attrition rates due to the complexity of programming topics. To this end, the reported experiment is meant to explore the effectiveness of various strategies to elicit self-explanation as a way to improve comprehension and learning during complex code comprehension and learning activities in intro-to-programming courses. The experiment showed pre-/post-test learning gains of 30% (M = 0.30, SD = 0.47) for the Free Self-Explanation condition and learning gains of 59% (M = 0.59,SD = 0.39) for the Socratic method. Furthermore, we investigated the behavior of the two strategies as a function of students' prior knowledge which was measured using learners' pretest score. For the Free Self-Explanation condition, there was no significant difference in mean learning gains for low vs. high knowledge students. The magnitude of the difference in performance (mean difference= 0.02,95% CI: -0.34 to 0.39) was very small (eta squared = 0.006). Likewise, the Socratic method showed no significant difference in mean learning gains between low vs. high performing students. The magnitude of the performance difference (mean difference =-0.24,95% CI: -0.534 to 0.03) was large (eta squared = 0.10). These findings suggest that eliciting self-explanations can be used as an effective strategy and that guided self-explanations as in the Socratic method condition is more effective at inducing learning gains.more » « less
-
null (Ed.)We present in this paper the results of a randomized control trial experiment that compared the effectiveness of two instructional strategies that scaffold learners' code comprehension processes: eliciting Free Self-Explanation and a Socratic Method. Code comprehension, i.e., understanding source code, is a critical skill for both learners and professionals. Improving learners' code comprehension skills should result in improved learning which in turn should help with retention in intro-to-programming courses which are notorious for suffering from very high attrition rates due to the complexity of programming topics. To this end, the reported experiment is meant to explore the effectiveness of various strategies to elicit self-explanation as a way to improve comprehension and learning during complex code comprehension and learning activities in intro-to-programming courses. The experiment showed pre-/post-test learning gains of 30% (M = 0.30, SD = 0.47) for the Free Self-Explanation condition and learning gains of 59% (M = 0.59,SD = 0.39) for the Socratic method. Furthermore, we investigated the behavior of the two strategies as a function of students' prior knowledge which was measured using learners' pretest score. For the Free Self-Explanation condition, there was no significant difference in mean learning gains for low vs. high knowledge students. The magnitude of the difference in performance (mean difference= 0.02,95% CI: -0.34 to 0.39) was very small (eta squared = 0.006). Likewise, the Socratic method showed no significant difference in mean learning gains between low vs. high performing students. The magnitude of the performance difference (mean difference =-0.24,95% CI: -0.534 to 0.03) was large (eta squared = 0.10). These findings suggest that eliciting self-explanations can be used as an effective strategy and that guided self-explanations as in the Socratic method condition is more effective at inducing learning gains.more » « less
-
Coaches are vital for effective collaboration, but cost and resource constraints often limit their availability during real-world tasks. This limitation poses serious challenges in life-critical domains that rely on effective teamwork, such as healthcare and disaster response. To address this gap, we propose and realize an innovative application of AI: task-time team coaching. Specifically, we introduce Socratic, a novel AI system that complements human coaches by providing real-time guidance during task execution. Socratic monitors team behavior, detects misalignments in team members' shared understanding, and delivers automated interventions to improve team performance. We validated Socratic through two human subject experiments involving dyadic collaboration. The results demonstrate that the system significantly enhances team performance with minimal interventions. Participants also perceived Socratic as helpful and trustworthy, supporting its potential for adoption. Our findings also suggest promising directions both for AI research and its practical applications to enhance human teamwork.more » « less
-
null (Ed.)This paper discusses the results of replicating and extending a study performed by Cooper et al. examining the relationship between students’ spatial skills and their success in learning to program. Whereas Cooper et al. worked with high school students participating in a summer program, we worked with college students taking an introductory computing course. Like Cooper et al.’s study, we saw a correlation between a student’s spatial skills and their success in learning computing. More significantly, we saw that after applying an intervention to teach spatial skills, students demonstrated improved performance both on a standard spatial skills assessment as well as on a CS content instrument. We also saw a correlation between students’ enjoyment in computing and improved performance both on a standard spatial skills assessment and on a CS content instrument, a result not observed by Cooper et al.more » « less
An official website of the United States government

