skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Impact of AGN Wind Feedback in Simulations of Isolated Galaxies with a Multiphase ISM
Abstract Accreting black holes can drive fast and energetic nuclear winds that may be an important feedback mechanism associated with active galactic nuclei (AGN). In this paper, we implement a scheme for capturing feedback from these fast nuclear winds and examine their impact in simulations of isolated disk galaxies. Stellar feedback is modeled using the FIRE physics and produces a realistic multiphase interstellar medium (ISM). We find that AGN winds drive the formation of a low-density, high-temperature central gas cavity that is broadly consistent with analytic model expectations. The effects of AGN feedback on the host galaxy are a strong function of the wind kinetic power and momentum. Low and moderate luminosity AGN do not have a significant effect on their host galaxy: the AGN winds inefficiently couple to the ambient ISM and instead a significant fraction of their energy vents in the polar direction. For such massive black holes, accretion near the Eddington limit can have a dramatic impact on the host galaxy ISM: if AGN wind feedback acts for ≳ 20 − 30 Myr, the inner ∼1 − 10 kpc of the ISM is disrupted and the global galaxy star formation rate is significantly reduced. We quantify the properties of the resulting galaxy-scale outflows and find that the radial momentum in the outflow is boosted by a factor ∼2 − 3 relative to that initially supplied in the AGN wind for strong feedback scenarios, decreasing below unity for less energetic winds. In contrast to observations, however, the outflows are primarily hot, with very little atomic or molecular gas. We conjecture that merging galaxies and high-redshift galaxies, which have more turbulent and thicker disks and very different nuclear gas geometries, may be even more disrupted by AGN winds than found in our simulations.  more » « less
Award ID(s):
1715216 1715847 1909933 1909831 1715101
PAR ID:
10188421
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
ISSN:
0035-8711
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Feedback likely plays a crucial role in resolving discrepancies between observations and theoretical predictions of dwarf galaxy properties. Stellar feedback was once believed to be sufficient to explain these discrepancies, but it has thus far failed to fully reconcile theory and observations. The recent discovery of energetic galaxy-wide outflows in dwarf galaxies hosting active galactic nuclei (AGNs) suggests that AGN feedback may have a larger role in the evolution of dwarf galaxies than previously suspected. In order to assess the relative importance of stellar versus AGN feedback in these galaxies, we perform a detailed Keck/KCWI optical integral field spectroscopic study of a sample of low-redshift star-forming (SF) dwarf galaxies that show outflows in ionized gas in their Sloan Digital Sky Survey spectra. We characterize the outflows and compare them to observations of AGN-driven outflows in dwarfs. We find that SF dwarfs have outflow components that have comparable widths (W80) to those of outflows in AGN dwarfs, but are much less blueshifted, indicating that SF dwarfs have significantly slower outflows than their AGN counterparts. Outflows in SF dwarfs are spatially resolved and significantly more extended than those in AGN dwarfs. The mass-loss, momentum, and energy rates of star-formation-driven outflows are much lower than those of AGN-driven outflows. Our results indicate that AGN feedback in the form of gas outflows may play an important role in dwarf galaxies and should be considered along with SF feedback in models of dwarf galaxy evolution. 
    more » « less
  2. ABSTRACT Negative feedback from accreting supermassive black holes is considered crucial in suppressing star formation and quenching massive galaxies. However, several models and observations suggest that black hole feedback may have a positive effect, triggering star formation by compressing interstellar medium gas to higher densities. We investigate the dual role of black hole feedback using cosmological hydrodynamic simulations from the Feedback In Realistic Environment (FIRE) project, incorporating a novel implementation of hyper-refined accretion-disc winds. Focusing on a massive, star-forming galaxy at z ∼ 2 ($$M_{\rm halo} \sim 10^{12.5}\, {\rm M}_{\odot }$$), we demonstrate that strong quasar winds with a kinetic power of ∼1046 erg s−1, persisting for over 20 Myr, drive the formation of a central gas cavity and significantly reduce the surface density of star formation across the galaxy’s disc. The suppression of star formation primarily occurs by limiting the availability of gas for star formation rather than by evacuating the pre-existing star-forming gas reservoir (preventive feedback dominates over ejective feedback). Despite the overall negative impact of quasar winds, we identify several potential indicators of local positive feedback, including (1) the spatial anticorrelation between wind-dominated regions and star-forming clumps, (2) higher local star formation efficiency in compressed gas at the edge of the cavity, and (3) increased contribution of outflowing material to local star formation. Moreover, stars formed under the influence of quasar winds tend to be located at larger radial distances. Our findings suggest that both positive and negative AGN feedback can coexist within galaxies, although the local positive triggering of star formation has a minor influence on global galaxy growth. 
    more » « less
  3. ABSTRACT We study gas inflows on to supermassive black holes using hydrodynamics simulations of isolated galaxies and idealized galaxy mergers with an explicit, multiphase interstellar medium (ISM). Our simulations use the recently developed ISM and stellar evolution model called Stars and MUltiphase Gas in GaLaxiEs (SMUGGLE). We implement a novel super-Lagrangian refinement scheme that increases the gas mass resolution in the immediate neighbourhood of the black holes (BHs) to accurately resolve gas accretion. We do not include black hole feedback in our simulations. We find that the complex and turbulent nature of the SMUGGLE ISM leads to highly variable BH accretion. BH growth in SMUGGLE converges at gas mass resolutions ≲3 × 103 M⊙. We show that the low resolution simulations combined with the super-Lagrangian refinement scheme are able to produce central gas dynamics and BH accretion rates very similar to that of the uniform high resolution simulations. We further explore BH fueling by simulating galaxy mergers. The interaction between the galaxies causes an inflow of gas towards the galactic centres and results in elevated and bursty star formation. The peak gas densities near the BHs increase by orders of magnitude resulting in enhanced accretion. Our results support the idea that galaxy mergers can trigger AGN activity, although the instantaneous accretion rate depends strongly on the local ISM. We also show that the level of merger-induced enhancement of BH fueling predicted by the SMUGGLE model is much smaller compared to the predictions by simulations using an effective equation of state model of the ISM. 
    more » « less
  4. Abstract While stellar processes are believed to be the main source of feedback in dwarf galaxies, the accumulating discoveries of active galactic nuclei (AGN) in dwarf galaxies over recent years arouse the interest to also consider AGN feedback in them. Fast, AGN-driven outflows, a major mechanism of AGN feedback, have indeed been discovered in dwarf galaxies and may be powerful enough to provide feedback to their dwarf hosts. In this paper, we search for outflows traced by the blueshifted ultraviolet absorption features in three dwarf galaxies with AGN from the sample examined in our previous ground-based study. We confirm outflows traced by blueshifted absorption features in two objects and tentatively detect an outflow in the third object. In one object where the outflow is clearly detected in multiple species, photoionization modeling suggests that this outflow is located ∼0.5 kpc from the AGN, implying a galactic-scale impact. This outflow is much faster and possesses a higher kinetic energy outflow rate than starburst-driven outflows in sources with similar star formation rates, and is likely energetic enough to provide negative feedback to its host galaxy as predicted by simulations. Much broader (∼4000 km s−1) absorption features are also discovered in this object, which may have the same origin as that of broad absorption lines in quasars. Additionally, strong Heiiλ1640 emission is detected in both objects where the transition falls in the wavelength coverage and is consistent with an AGN origin. In one of these two objects, a blueshifted Heiiλ1640 emission line is clearly detected, likely tracing a highly ionized AGN wind. 
    more » « less
  5. ABSTRACT We present an investigation of clustered stellar feedback in the form of superbubbles identified within 11 galaxies from the FIRE-2 (Feedback in Realistic Environments) cosmological zoom-in simulation suite, at both cosmic noon (1 < z < 3) and in the local universe. We study the spatially resolved multiphase outflows that these supernovae drive, comparing our findings with recent theory and observations. These simulations consist of five Large Magellanic Cloud–mass galaxies and six Milky Way-mass progenitors (with a minimum baryonic particle mass of $$m_{\rm b.min} = 7100\,{\rm M}_{\odot }$$). For all galaxies, we calculate the local and galaxy-averaged mass and energy-loading factors from the identified outflows. We also characterize the multiphase morphology and properties of the identified superbubbles, including the ‘shell’ of cool ($$T\lt 10^5$$ K) gas and break out of energetic hot ($$T\gt 10^5$$ K) gas when the shell bursts. We find that these simulations, regardless of redshift, have mass-loading factors and momentum fluxes in the cool gas that largely agree with recent observations. Lastly, we also investigate how methodological choices in measuring outflows can affect loading factors for galactic winds. 
    more » « less