skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spatial Sigma-Delta Modulation for the Massive MIMO Downlink
In massive MIMO, replacing high-resolution ADCs/DACs with low-resolution ones has been deemed as a potential way to significantly reduce the power consumption and hardware costs of massive MIMO implementations. In this context, the challenge lies in how the quantization error effect can be suppressed under low-resolution ADCs/DACs. In this paper we study a spatial sigma-delta (ΣΔ) modulation approach for massive MIMO downlink precoding under one-bit DACs. ΣΔ modulation is a classical signal processing concept for coarse analog-to-digital/digital-to-analog conversion of temporal signals. Fundamentally its idea is to shape the quantization error as high-frequency noise and to avoid using the high-frequency region by oversampling. Assuming a uniform linear array at the base station (BS), we show how ΣΔ modulation can be adapted to the space, or MIMO, case. Essentially, by relating frequency in the temporal case and angle in the spatial case, we develop a spatial ΣΔ modulation solution. By considering sectored array operations we study how the quantization error effect can be reduced, and the effective SNR improved, for zero-forcing (ZF) precoding. Our simulation results show that ZF precoding under spatial ΣΔ modulation performs much better than ZF precoding under direct quantization.  more » « less
Award ID(s):
1824565 1703635
PAR ID:
10188442
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
53rd Asilomar Conference on Signals, Systems, and Computers
Page Range / eLocation ID:
833 to 837
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Massive MIMO using low-resolution digital-to-analog converters (DACs) at the base station (BS) is an attractive downlink approach for reducing hardware overhead and for reducing power consumption, but managing the large quantization noise effect is a challenge. Spatial Sigma-Delta modulation is a recently emerged technique for tackling the aforementioned effect. Assuming a uniform linear array at the BS, it works by shaping the quantization noise as high spatial-frequency, or angle, noise. By restricting the user-serving region to be within a smaller angular region, the quantization noise incurred by the users can be effectively reduced. We previously showed that, under the one-bit DAC case, the quantization noise can be satisfactorily contained using a simple first-order Sigma-Delta modulation scheme. In this work we study the potential of spatial Sigma-Delta modulation in the two-bit DAC case and under second-order modulation. Our empirical results indicate that second-order spatial Sigma-Delta modulation provides better quantization noise suppression. 
    more » « less
  2. Coarsely quantized MIMO signalling methods have gained popularity in the recent developments of massive MIMO as they open up opportunities for massive MIMO implementation using cheap and power-efficient radio-frequency front-ends. This paper presents a new one-bit MIMO precoding approach using spatial Sigma-Delta (∑Δ) modulation. In previous one-bit MIMO precoding research, one mainly focuses on using optimization to tackle the difficult binary signal optimization problem that arise from the precoding design. Our approach attempts a different route. Assuming angular MIMO channels, we apply ∑Δ modulation—a classical concept in analog-to-digital conversion of temporal signals—in space. The resulting ∑Δ precoding approach has two main advantages: First, we no longer need to deal with binary optimization in ∑Δ precoding design. Particularly, the binary signal restriction is replaced by convex signal amplitude constraints. Second, the impact of the quantization error can be well controlled via modulator design and under appropriate operating conditions. Through symbol error probability analysis, we reveal that the very large number of antennas in massive MIMO provides favorable operating conditions for ∑Δ precoding. In addition, we develop a new ∑Δ modulation architecture that is capable of adapting the channel to achieve nearly zero quantization error for a targeted user. Furthermore, we consider multi-user ∑Δ precoding using the zero-forcing and symbol-level precoding schemes. These two ∑Δ precoding schemes perform considerably better than their direct one-bit quantized counterparts, as simulation results show. 
    more » « less
  3. All-digital massive multiuser (MU) multiple-input multiple-output (MIMO) at millimeter-wave (mmWave) frequencies is a promising technology for next-generation wireless systems. Low-resolution analog-to-digital converters (ADCs) can be utilized to reduce the power consumption of all-digital basestation (BS) designs. However, simultaneously transmitting user equipments (UEs) with vastly different BS-side receive powers either drown weak UEs in quantization noise or saturate the ADCs. To address this issue, we propose high dynamic range (HDR) MIMO, a new paradigm that enables simultaneous reception of strong and weak UEs with low-resolution ADCs. HDR MIMO combines an adaptive analog spatial transform with digital equalization: The spatial transform focuses strong UEs on a subset of ADCs in order to mitigate quantization and saturation artifacts; digital equalization is then used for data detection. We demonstrate the efficacy of HDR MIMO in a massive MU-MIMO mmWave scenario that uses Householder reflections as spatial transform. 
    more » « less
  4. Enabling communications in the (sub-)THz band will call for massive multiple-input multiple-output (MIMO) arrays at either the transmit- or receive-side, or at both. To scale down the complexity and power consumption when operating across massive frequency and antenna dimensions, a sacrifice in the resolution of the digital-to-analog/analog-to-digital converters (DACs/ADCs) will be inevitable. In this paper, we analyze the extreme scenario where both the transmit- and receive-side are equipped with fully digital massive MIMO arrays and 1-bit DACs/ADCs, which leads to a system with minimum radio-frequency complexity, cost, and power consumption. Building upon the Bussgang decomposition, we derive a tractable approximation of the mean squared error (MSE) between the transmitted data symbols and their soft estimates. Numerical results show that, despite its simplicity, a doubly 1-bit quantized massive MIMO system with very large antenna arrays can deliver an impressive performance in terms of MSE and symbol error rate. 
    more » « less
  5. The uplink performance of a mixed analog-to-digital converter (ADC) massive multiple-input multiple-output (MIMO) architecture with a space-constrained array at the base station (BS) is analyzed. We investigate the effect of spatial correlation and mutual coupling on the spectral efficiency (SE) of the system. First, we analyze to what extent adding a small number of high-resolution ADCs can impact the channel estimation accuracy. Then, we derive a closed-form approximation for the SE. Our analysis demonstrates how a space constraint on a uniform linear array (ULA) can affect the design of a massive MIMO system with low-resolution ADCs. It is shown that by equally spacing a small number of high-resolution ADCs over the array, one can dramatically reduce the performance gap between a system with all low-resolution and all high-resolution ADCs. 
    more » « less