skip to main content

Title: One-Bit Sigma-Delta MIMO Precoding
Coarsely quantized MIMO signalling methods have gained popularity in the recent developments of massive MIMO as they open up opportunities for massive MIMO implementation using cheap and power-efficient radio-frequency front-ends. This paper presents a new one-bit MIMO precoding approach using spatial Sigma-Delta (∑Δ) modulation. In previous one-bit MIMO precoding research, one mainly focuses on using optimization to tackle the difficult binary signal optimization problem that arise from the precoding design. Our approach attempts a different route. Assuming angular MIMO channels, we apply ∑Δ modulation—a classical concept in analog-to-digital conversion of temporal signals—in space. The resulting ∑Δ precoding approach has two main advantages: First, we no longer need to deal with binary optimization in ∑Δ precoding design. Particularly, the binary signal restriction is replaced by convex signal amplitude constraints. Second, the impact of the quantization error can be well controlled via modulator design and under appropriate operating conditions. Through symbol error probability analysis, we reveal that the very large number of antennas in massive MIMO provides favorable operating conditions for ∑Δ precoding. In addition, we develop a new ∑Δ modulation architecture that is capable of adapting the channel to achieve nearly zero quantization error for a targeted user. Furthermore, we consider more » multi-user ∑Δ precoding using the zero-forcing and symbol-level precoding schemes. These two ∑Δ precoding schemes perform considerably better than their direct one-bit quantized counterparts, as simulation results show. « less
; ; ;
Award ID(s):
1824565 1703635
Publication Date:
Journal Name:
IEEE Journal of Selected Topics in Signal Processing
Page Range or eLocation-ID:
1 to 1
Sponsoring Org:
National Science Foundation
More Like this
  1. In massive MIMO, replacing high-resolution ADCs/DACs with low-resolution ones has been deemed as a potential way to significantly reduce the power consumption and hardware costs of massive MIMO implementations. In this context, the challenge lies in how the quantization error effect can be suppressed under low-resolution ADCs/DACs. In this paper we study a spatial sigma-delta (ΣΔ) modulation approach for massive MIMO downlink precoding under one-bit DACs. ΣΔ modulation is a classical signal processing concept for coarse analog-to-digital/digital-to-analog conversion of temporal signals. Fundamentally its idea is to shape the quantization error as high-frequency noise and to avoid using the high-frequency region by oversampling. Assuming a uniform linear array at the base station (BS), we show how ΣΔ modulation can be adapted to the space, or MIMO, case. Essentially, by relating frequency in the temporal case and angle in the spatial case, we develop a spatial ΣΔ modulation solution. By considering sectored array operations we study how the quantization error effect can be reduced, and the effective SNR improved, for zero-forcing (ZF) precoding. Our simulation results show that ZF precoding under spatial ΣΔ modulation performs much better than ZF precoding under direct quantization.
  2. In this paper, we focus on the multiuser massive multiple-input single-output (MISO) downlink with low-cost 1-bit digital-to-analog converters (DACs) for PSK modulation, and propose a low-complexity refinement process that is applicable to any existing 1-bit precoding approaches based on the constructive interference (CI) formulation. With the decomposition of the signals along the detection thresholds, we first formulate a simple symbol-scaling method as the performance metric. The low-complexity refinement approach is subsequently introduced, where we aim to improve the introduced symbol-scaling performance metric by modifying the transmit signal on one antenna at a time. Numerical results validate the effectiveness of the proposed refinement method on existing approaches for massive MIMO with 1-bit DACs, and the performance improvements are most significant for the low-complexity quantized zero-forcing (ZF) method.
  3. Massive MIMO aims to build wireless base stations with hundreds of coherently operating antennas serving tens of single antenna users in order to improve both the transmission capacity by a factor 10-50 and the energy-efficiency trade-off by up to a thousand times. Pre-coding at the base station has been proposed to efficiently implement digital beamforming. It implies a high signal dynamic range and therefore a power backoff resulting in less energy-efficiency. One-bit quantized Zero-Forcing precoding has been proposed to efficiently handle the RF front-end when the array is implemented with so many antennas. In this paper, we analyze the energy-efficiency of the quantized Zero-Forcing precoded systems for a large number of users and a massive MIMO base station.
  4. Recently a number of nonlinear precoding algorithms have been developed for designing a downlink transmit signal that is constrained by some nonlinearity, such as one-bit quantization, power-amplifier saturation or constant modulus. These methods use iterative search algorithms to directly design the signal that is transmitted from each antenna. Since the dimension of the search space equals the number of antennas, the computational complexity of these approaches can be high for massive MIMO scenarios. Thus, in this paper we pose the problem in a smaller dimensional space by constraining the signal prior to the nonlinearity to be the output of a linear precoder. The search is then over the vector of predistorted symbols at the input to the linear precoder, which is typically much smaller than the number of antennas. We focus on algorithms that minimize the bit error rate at the receivers, and show that performance can be obtained that is similar to algorithms that operate directly in the antenna domain.
  5. Power consumption of multiuser (MU) precoding is a major concern in all-digital massive MU multiple-input multiple-output (MIMO) basestations with hundreds of antenna elements operating at millimeter-wave (mmWave) frequencies. We propose to replace part of the linear Wiener filter (WF) precoding matrix by a Finite-Alphabet WF Precoding (FAWP) matrix, which enables the use of low-precision hardware that consumes low power and area. To minimize the performance loss of our approach, we present methods that efficiently compute mean-square error (MSE)-optimal FAWP matrices. Our results show that FAWP matrices are able to approach infinite-precision error-rate and error vector magnitude performance with only 3-bit precoding weights, even when operating under realistic mmWave propagation conditions. Hence, FAWP is a promising approach to substantially reduce power consumption and silicon area in all-digital mmWave massive MU-MIMO systems.