skip to main content


Title: Capacities and efficient computation of first-passage probabilities
A reversible diffusion process is initialized at position x0 and run until it first hits any of several targets. What is the probability that it terminates at a particular target? We propose a computationally efficient approach for estimating this probability, focused on those situations in which it takes a long time to hit any target. In these cases, direct simulation of the hitting probabilities becomes prohibitively expensive. On the other hand, if the timescales are sufficiently long, then the system will essentially “forget” its initial condition before it encounters a target. In these cases the hitting probabilities can be accurately approximated using only local simulations around each target, obviating the need for direct simulations. In empirical tests, we find that these local estimates can be computed in the same time it would take to compute a single direct simulation, but that they achieve an accuracy that would require thousands of direct simulation runs.  more » « less
Award ID(s):
1740741
NSF-PAR ID:
10188723
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Physical review
Volume:
102
ISSN:
2470-0045
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A variety of systems in physics, chemistry, biology, and psychology are modeled in terms of diffusing ‘searchers’ looking for ‘targets’. Examples range from gene regulation, to cell sensing, to human decision-making. A commonly studied statistic in these models is the so-called hitting probability for each target, which is the probability that a given single searcher finds that particular target. However, the decisive event in many systems is not the arrival of a given single searcher to a target, but rather the arrival of the fastest searcher to a target out of many searchers. In this paper, we study the probability that the fastest diffusive searcher hits a given target in the many searcher limit, which we call the extreme hitting probability. We first prove an upper bound for the decay of the probability that the searcher finds a target other than the closest target. This upper bound applies in very general settings and depends only on the relative distances to the targets. Furthermore, we find the exact asymptotics of the extreme hitting probabilities in terms of the short-time distribution of when a single searcher hits a target. These results show that the fastest searcher always hits the closest target in the many searcher limit. While this fact is intuitive in light of recent results on the time it takes the fastest searcher to find a target, our results give rigorous, quantitative estimates for the extreme hitting probabilities. We illustrate our results in several examples and numerical solutions. 
    more » « less
  2. Dynamic network topology can pose important challenges to communication and control protocols in networks of autonomous vehicles. For instance, maintaining connectivity is a key challenge in unmanned aerial vehicle (UAV) networks. However, tracking and computational resources of the observer module might not be sufficient for constant monitoring of all surrounding nodes in large-scale networks. In this paper, we propose an optimal measurement policy for network topology monitoring under constrained resources. To this end, We formulate the localization of multiple objects in terms of linear networked systems and solve it using Kalman filtering with intermittent observation. The proposed policy includes two sequential steps. We first find optimal measurement attempt probabilities for each target using numerical optimization methods to assign the limited number of resources among targets. The optimal resource allocation follows a waterfall-like solution to assign more resources to targets with lower measurement success probability. This provides a 10% to 60% gain in prediction accuracy. The second step is finding optimal on-off patterns for measurement attempts for each target over time. We show that a regular measurement pattern that evenly distributed resources over time outperforms the two extreme cases of using all measurement resources either in the beginning or at the end of the measurement cycle. Our proof is based on characterizing the fixed-point solution of the error covariance matrix for regular patterns. Extensive simulation results confirm the optimality of the most alternating pattern with up to 10-fold prediction improvement for different scenarios. These two guidelines define a general policy for target tracking under constrained resources with applications to network topology prediction of autonomous systems 
    more » « less
  3. Computer modeling, simulation and optimization are powerful tools that have seen increased use in biomechanics research. Dynamic optimizations can be categorized as either data-tracking or predictive problems. The data-tracking approach has been used extensively to address human movement problems of clinical relevance. The predictive approach also holds great promise, but has seen limited use in clinical applications. Enhanced software tools would facilitate the application of predictive musculoskeletal simulations to clinically-relevant research. The open-source software OpenSim provides tools for generating tracking simulations but not predictive simulations. However, OpenSim includes an extensive application programming interface that permits extending its capabilities with scripting languages such as MATLAB. In the work presented here, we combine the computational tools provided by MATLAB with the musculoskeletal modeling capabilities of OpenSim to create a framework for generating predictive simulations of musculoskeletal movement based on direct collocation optimal control techniques. In many cases, the direct collocation approach can be used to solve optimal control problems considerably faster than traditional shooting methods. Cyclical and discrete movement problems were solved using a simple 1 degree of freedom musculoskeletal model and a model of the human lower limb, respectively. The problems could be solved in reasonable amounts of time (several seconds to 1–2 hours) using the open-source IPOPT solver. The problems could also be solved using the fmincon solver that is included with MATLAB, but the computation times were excessively long for all but the smallest of problems. The performance advantage for IPOPT was derived primarily by exploiting sparsity in the constraints Jacobian. The framework presented here provides a powerful and flexible approach for generating optimal control simulations of musculoskeletal movement using OpenSim and MATLAB. This should allow researchers to more readily use predictive simulation as a tool to address clinical conditions that limit human mobility.

     
    more » « less
  4. Arıkan’s exciting discovery of polar codes has provided an altogether new way to efficiently achieve Shannon capacity. Given a (constant-sized) invertible matrix M , a family of polar codes can be associated with this matrix and its ability to approach capacity follows from the polarization of an associated [0, 1]-bounded martingale, namely its convergence in the limit to either 0 or 1 with probability 1. Arıkan showed appropriate polarization of the martingale associated with the matrix ( G 2 = ( 1 1 0 1) to get capacity achieving codes. His analysis was later extended to all matrices M that satisfy an obvious necessary condition for polarization. While Arıkan’s theorem does not guarantee that the codes achieve capacity at small blocklengths (specifically in length, which is a polynomial in ( 1ε ) where (ε) is the difference between the capacity of a channel and the rate of the code), it turns out that a “strong” analysis of the polarization of the underlying martingale would lead to such constructions. Indeed for the martingale associated with ( G 2 ) such a strong polarization was shown in two independent works (Guruswami and Xia (IEEE IT’15) and Hassani et al. (IEEE IT’14)), thereby resolving a major theoretical challenge associated with the efficient attainment of Shannon capacity. In this work we extend the result above to cover martingales associated with all matrices that satisfy the necessary condition for (weak) polarization. In addition to being vastly more general, our proofs of strong polarization are (in our view) also much simpler and modular. Key to our proof is a notion of local polarization that only depends on the evolution of the martingale in a single time step. We show that local polarization always implies strong polarization. We then apply relatively simple reasoning about conditional entropies to prove local polarization in very general settings. Specifically, our result shows strong polarization over all prime fields and leads to efficient capacity-achieving source codes for compressing arbitrary i.i.d. sources, and capacity-achieving channel codes for arbitrary symmetric memoryless channels. We show how to use our analyses to achieve exponentially small error probabilities at lengths inverse polynomial in the gap to capacity. Indeed we show that we can essentially match any error probability while maintaining lengths that are only inverse polynomial in the gap to capacity. 
    more » « less
  5. null (Ed.)
    Abstract Standard procedures for capture–mark–recapture modelling (CMR) for the study of animal demography include running goodness-of-fit tests on a general starting model. A frequent reason for poor model fit is heterogeneity in local survival among individuals captured for the first time and those already captured or seen on previous occasions. This deviation is technically termed a transience effect. In specific cases, simple, uni-state CMR modeling showing transients may allow researchers to assess the role of these transients on population dynamics. Transient individuals nearly always have a lower local survival probability, which may appear for a number of reasons. In most cases, transients arise due to permanent dispersal, higher mortality, or a combination of both. In the case of higher mortality, transients may be symptomatic of a cost of first reproduction. A few studies working at large spatial scales actually show that transients more often correspond to survival costs of first reproduction rather than to permanent dispersal, bolstering the interpretation of transience as a measure of costs of reproduction, since initial detections are often associated with first breeding attempts. Regardless of their cause, the loss of transients from a local population should lower population growth rate. We review almost 1000 papers using CMR modeling and find that almost 40% of studies fitting the searching criteria (N = 115) detected transients. Nevertheless, few researchers have considered the ecological or evolutionary meaning of the transient phenomenon. Only three studies from the reviewed papers considered transients to be a cost of first reproduction. We also analyze a long-term individual monitoring dataset (1988–2012) on a long-lived bird to quantify transients, and we use a life table response experiment (LTRE) to measure the consequences of transients at a population level. As expected, population growth rate decreased when the environment became harsher while the proportion of transients increased. LTRE analysis showed that population growth can be substantially affected by changes in traits that are variable under environmental stochasticity and deterministic perturbations, such as recruitment, fecundity of experienced individuals, and transient probabilities. This occurred even though sensitivities and elasticities of these parameters were much lower than those for adult survival. The proportion of transients also increased with the strength of density-dependence. These results have implications for ecological and evolutionary studies and may stimulate other researchers to explore the ecological processes behind the occurrence of transients in capture–recapture studies. In population models, the inclusion of a specific state for transients may help to make more reliable predictions for endangered and harvested species. 
    more » « less