skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Large-scale poloidal magnetic field dynamo leads to powerful jets in GRMHD simulations of black hole accretion with toroidal field
ABSTRACT Accreting black holes (BHs) launch relativistic collimated jets, across many decades in luminosity and mass, suggesting the jet launching mechanism is universal, robust, and scale-free. Theoretical models and general relativistic magnetohydrodynamic (GRMHD) simulations indicate that the key jet-making ingredient is large-scale poloidal magnetic flux. However, its origin is uncertain, and it is unknown if it can be generated in situ or dragged inward from the ambient medium. Here, we use the GPU-accelerated GRMHD code h-amr to study global 3D BH accretion at unusually high resolutions more typical of local shearing box simulations. We demonstrate that turbulence in a radially extended accretion disc can generate large-scale poloidal magnetic flux in situ, even when starting from a purely toroidal magnetic field. The flux accumulates around the BH till it becomes dynamically important, leads to a magnetically arrested disc (MAD), and launches relativistic jets that are more powerful than the accretion flow. The jet power exceeds that of previous GRMHD toroidal field simulations by a factor of 10 000. The jets do not show significant kink or pinch instabilities, accelerate to γ ∼ 10 over three decades in distance, and follow a collimation profile similar to the observed M87 jet.  more » « less
Award ID(s):
1815304
PAR ID:
10189310
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
494
Issue:
3
ISSN:
0035-8711
Page Range / eLocation ID:
3656 to 3662
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Multiwavelength observations suggest that the accretion disk in the hard and intermediate states of X-ray binaries (XRBs) and active galactic nucleus transitions from a cold, thin disk at large distances into a hot, thick flow close to the black hole (BH). However, the formation, structure, and dynamics of such truncated disks are poorly constrained due to the complexity of the thermodynamic, magnetic, and radiative processes involved. We present the first radiation-transport two-temperature general relativistic magnetohydrodynamic (GRMHD) simulations of truncated disks radiating at ∼35% of the Eddington luminosity with and without large-scale poloidal magnetic flux. We demonstrate that when a geometrically thin accretion disk is threaded by large-scale net poloidal magnetic flux, it self-consistently transitions at small radii into a two-phase medium of cold gas clumps floating through a hot, magnetically dominated corona. This transition occurs at a well-defined truncation radius determined by the distance out to which the disk is saturated with magnetic flux. The average ion and electron temperatures in the semiopaque corona reach, respectively,Ti≳ 1010K andTe≳ 5 × 108K. The system produces radiation, powerful collimated jets, and broader winds at the total energy efficiency exceeding 90%, the highest ever energy extraction efficiency from a spinning BH by a radiatively efficient flow in a GRMHD simulation. This is consistent with jetted ejections observed during XRB outbursts. The two-phase medium may naturally lead to broadened iron line emission observed in the hard state. 
    more » « less
  2. Abstract The presence of a strong, large-scale magnetic field in an accretion flow leads to the extraction of the rotational energy of the black hole (BH) through the Blandford–Znajek (BZ) process, believed to power relativistic jets in various astrophysical sources. We study rotational energy extraction from a BH surrounded by a highly magnetized thin disk by performing a set of 3D global GRMHD simulations. We find that the saturated flux threading the BH has a weaker dependence on BH spin, compared to highly magnetized hot (geometrically thick) accretion flows. Also, we find that only a fraction (10%–70%) of the extracted BZ power is channeled into the jet, depending on the spin parameter. The remaining energy is potentially used to launch winds or contribute to the radiative output of the disk or corona. Our simulations reveal that the presence of a strong magnetic field enhances the radiative efficiency of the disk, making it more luminous than its weakly magnetized counterpart or the standard disk model. We attribute this excess luminosity primarily to the enhanced magnetic dissipation in the intra-ISCO region. Our findings have implications for understanding X-ray corona formation and BH spin measurements, and interpreting BH transient phenomena. 
    more » « less
  3. Abstract We present the first numerical simulations that track the evolution of a black hole–neutron star (BH–NS) merger from premerger tor≳ 1011cm. The disk that forms after a merger of mass ratioq= 2 ejects massive disk winds (3–5 × 10−2M). We introduce various postmerger magnetic configurations and find that initial poloidal fields lead to jet launching shortly after the merger. The jet maintains a constant power due to the constancy of the large-scale BH magnetic flux until the disk becomes magnetically arrested (MAD), where the jet power falls off asLj∼t−2. All jets inevitably exhibit either excessive luminosity due to rapid MAD activation when the accretion rate is high or excessive duration due to delayed MAD activation compared to typical short gamma-ray bursts (sGRBs). This provides a natural explanation for long sGRBs such as GRB 211211A but also raises a fundamental challenge to our understanding of jet formation in binary mergers. One possible implication is the necessity of higher binary mass ratios or moderate BH spins to launch typical sGRB jets. For postmerger disks with a toroidal magnetic field, dynamo processes delay jet launching such that the jets break out of the disk winds after several seconds. We show for the first time that sGRB jets with initial magnetizationσ0> 100 retain significant magnetization (σ≫ 1) atr> 1010cm, emphasizing the importance of magnetic processes in the prompt emission. The jet–wind interaction leads to a power-law angular energy distribution by inflating an energetic cocoon whose emission is studied in a companion paper. 
    more » « less
  4. ABSTRACT We present a suite of the first 3D GRMHD collapsar simulations, which extend from the self-consistent jet launching by an accreting Kerr black hole (BH) to the breakout from the star. We identify three types of outflows, depending on the angular momentum, l, of the collapsing material and the magnetic field, B, on the BH horizon: (i) subrelativistic outflow (low l and high B), (ii) stationary accretion shock instability (SASI; high l and low B), (iii) relativistic jets (high l and high B). In the absence of jets, free-fall of the stellar envelope provides a good estimate for the BH accretion rate. Jets can substantially suppress the accretion rate, and their duration can be limited by the magnetization profile in the star. We find that progenitors with large (steep) inner density power-law indices (≳ 2), face extreme challenges as gamma-ray burst (GRB) progenitors due to excessive luminosity, global time evolution in the light curve throughout the burst and short breakout times, inconsistent with observations. Our results suggest that the wide variety of observed explosion appearances (supernova/supernova + GRB/low-luminosity GRBs) and the characteristics of the emitting relativistic outflows (luminosity and duration) can be naturally explained by the differences in the progenitor structure. Our simulations reveal several important jet features: (i) strong magnetic dissipation inside the star, resulting in weakly magnetized jets by breakout that may have significant photospheric emission and (ii) spontaneous emergence of tilted accretion disc-jet flows, even in the absence of any tilt in the progenitor. 
    more » « less
  5. Abstract Fast, collimated jets are ubiquitous features of young stellar objects. They are generally thought to be powered by disk accretion, but the details are debated. Through 2D (axisymmetric) MHD simulations, we find that a fast (>100 km s−1) collimated bipolar jet is continuously driven along the north and south poles of a circumstellar disk that is initially magnetized by a large-scale open poloidal field and contains a thermally ionized inner magnetically active zone surrounded by a dead zone. The fast jet is primarily driven magnetocentrifugally by the release of the gravitational binding energy of the so-called “avalanche accretion streams” near the boundary of an evacuated poloidal field dominated polar region and a thick disk atmosphere raised by a toroidal magnetic field. Specifically, the fast outflow is driven along the upper (open) branch of the highly pinched poloidal field lines threading the (strongly magnetically braked) accretion streams, where the density is relatively low so that the lightly loaded material can be accelerated magnetocentrifugally along the open field line to a high speed. The highly pinched poloidal magnetic fields threading the avalanche accretion streams tend to reconnect, enabling mass to accrete to the center without dragging along the poloidal magnetic flux with it. The reconnection provides a potential heating source for producing chondrules and calcium- and aluminum-rich inclusions. 
    more » « less