skip to main content


Title: Measuring Disease Similarity Based on Multiple Heterogeneous Disease Information Networks
Quantifying the similarities between diseases is now playing an important role in biology and medicine, which provides reliable reference information in finding similar diseases. Most of the previous methods for similarity calculation between diseases either use a single-source data or do not fully utilize multi-sources data. In this study, we propose an approach to measure disease similarity by utilizing multiple heterogeneous disease information networks. Firstly, multiple disease-related data sources are formulated as heterogeneous disease information networks which include various types of objects such as disease, pathway, and chemicals. Then, the corresponding subgraphs of these heterogeneous disease information networks are obtained by filtering vertices. Topological scores and semantics scores are calculated in these heterogenous subgraphs using Dynamic Time Warping (DTW) algorithm and meta path method respectively. In this way, we transform multiple heterogeneous disease networks to a homogeneous disease network with different weights on the edges. Finally, the disease nodes can be embedded according to the weights and the similarity between diseases can then be calculated using these n-dimensional vectors. Experiments based on benchmark set fully demonstrate the effectiveness of our method in measuring the similarity of diseases through multisources data. Index Terms  more » « less
Award ID(s):
1815256
NSF-PAR ID:
10189582
Author(s) / Creator(s):
Date Published:
Journal Name:
2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
Page Range / eLocation ID:
228-231
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Parkinson's Disease (PD) is one of the most prevalent neurodegenerative diseases that affects tens of millions of Americans. PD is highly progressive and heterogeneous. Quite a few studies have been conducted in recent years on predictive or disease progression modeling of PD using clinical and biomarkers data. Neuroimaging, as another important information source for neurodegenerative disease, has also arisen considerable interests from the PD community. In this paper, we propose a deep learning method based on Graph Convolutional Networks (GCN) for fusing multiple modalities of brain images in relationship prediction which is useful for distinguishing PD cases from controls. On Parkinson's Progression Markers Initiative (PPMI) cohort, our approach achieved 0.9537±0.0587 AUC, compared with 0.6443±0.0223 AUC achieved by traditional approaches such as PCA. 
    more » « less
  2. Interval‐censored failure time data commonly arise in epidemiological and biomedical studies where the occurrence of an event or a disease is determined via periodic examinations. Subject to interval‐censoring, available information on the failure time can be quite limited. Cost‐effective sampling designs are desirable to enhance the study power, especially when the disease rate is low and the covariates are expensive to obtain. In this work, we formulate the case‐cohort design with multiple interval‐censored disease outcomes and also generalize it to nonrare diseases where only a portion of diseased subjects are sampled. We develop a marginal sieve weighted likelihood approach, which assumes that the failure times marginally follow the proportional hazards model. We consider two types of weights to account for the sampling bias, and adopt a sieve method with Bernstein polynomials to handle the unknown baseline functions. We employ a weighted bootstrap procedure to obtain a variance estimate that is robust to the dependence structure between failure times. The proposed method is examined via simulation studies and illustrated with a dataset on incident diabetes and hypertension from the Atherosclerosis Risk in Communities study.

     
    more » « less
  3. INTRODUCTION Thousands of genetic variants have been associated with human diseases and traits through genome-wide association studies (GWASs). Translating these discoveries into improved therapeutics requires discerning which variants among hundreds of candidates are causally related to disease risk. To date, only a handful of causal variants have been confirmed. Here, we leverage 100 million years of mammalian evolution to address this major challenge. RATIONALE We compared genomes from hundreds of mammals and identified bases with unusually few variants (evolutionarily constrained). Constraint is a measure of functional importance that is agnostic to cell type or developmental stage. It can be applied to investigate any heritable disease or trait and is complementary to resources using cell type– and time point–specific functional assays like Encyclopedia of DNA Elements (ENCODE) and Genotype-Tissue Expression (GTEx). RESULTS Using constraint calculated across placental mammals, 3.3% of bases in the human genome are significantly constrained, including 57.6% of coding bases. Most constrained bases (80.7%) are noncoding. Common variants (allele frequency ≥ 5%) and low-frequency variants (0.5% ≤ allele frequency < 5%) are depleted for constrained bases (1.85 versus 3.26% expected by chance, P < 2.2 × 10 −308 ). Pathogenic ClinVar variants are more constrained than benign variants ( P < 2.2 × 10 −16 ). The most constrained common variants are more enriched for disease single-nucleotide polymorphism (SNP)–heritability in 63 independent GWASs. The enrichment of SNP-heritability in constrained regions is greater (7.8-fold) than previously reported in mammals and is even higher in primates (11.1-fold). It exceeds the enrichment of SNP-heritability in nonsynonymous coding variants (7.2-fold) and fine-mapped expression quantitative trait loci (eQTL)–SNPs (4.8-fold). The enrichment peaks near constrained bases, with a log-linear decrease of SNP-heritability enrichment as a function of the distance to a constrained base. Zoonomia constraint scores improve functionally informed fine-mapping. Variants at sites constrained in mammals and primates have greater posterior inclusion probabilities and higher per-SNP contributions. In addition, using both constraint and functional annotations improves polygenic risk score accuracy across a range of traits. Finally, incorporating constraint information into the analysis of noncoding somatic variants in medulloblastomas identifies new candidate driver genes. CONCLUSION Genome-wide measures of evolutionary constraint can help discern which variants are functionally important. This information may accelerate the translation of genomic discoveries into the biological, clinical, and therapeutic knowledge that is required to understand and treat human disease. Using evolutionary constraint in genomic studies of human diseases. ( A ) Constraint was calculated across 240 mammal species, including 43 primates (teal line). ( B ) Pathogenic ClinVar variants ( N = 73,885) are more constrained across mammals than benign variants ( N = 231,642; P < 2.2 × 10 −16 ). ( C ) More-constrained bases are more enriched for trait-associated variants (63 GWASs). ( D ) Enrichment of heritability is higher in constrained regions than in functional annotations (left), even in a joint model with 106 annotations (right). ( E ) Fine-mapping (PolyFun) using a model that includes constraint scores identifies an experimentally validated association at rs1421085. Error bars represent 95% confidence intervals. BMI, body mass index; LF, low frequency; PIP, posterior inclusion probability. 
    more » « less
  4. With the wide application of electronic health records (EHR) in healthcare facilities, health event prediction with deep learning has gained more and more attention. A common feature of EHR data used for deep-learning-based predictions is historical diagnoses. Existing work mainly regards a diagnosis as an independent disease and does not consider clinical relations among diseases in a visit. Many machine learning approaches assume disease representations are static in different visits of a patient. However, in real practice, multiple diseases that are frequently diagnosed at the same time reflect hidden patterns that are conducive to prognosis. Moreover, the development of a disease is not static since some diseases can emerge or disappear and show various symptoms in different visits of a patient. To effectively utilize this combinational disease information and explore the dynamics of diseases, we propose a novel context-aware learning framework using transition functions on dynamic disease graphs. Specifically, we construct a global disease co-occurrence graph with multiple node properties for disease combinations. We design dynamic subgraphs for each patient's visit to leverage global and local contexts. We further define three diagnosis roles in each visit based on the variation of node properties to model disease transition processes. Experimental results on two real-world EHR datasets show that the proposed model outperforms state of the art in predicting health events. 
    more » « less
  5. Abstract Motivation

    Protein function prediction, based on the patterns of connection in a protein–protein interaction (or association) network, is perhaps the most studied of the classical, fundamental inference problems for biological networks. A highly successful set of recent approaches use random walk-based low-dimensional embeddings that tend to place functionally similar proteins into coherent spatial regions. However, these approaches lose valuable local graph structure from the network when considering only the embedding. We introduce GLIDER, a method that replaces a protein–protein interaction or association network with a new graph-based similarity network. GLIDER is based on a variant of our previous GLIDE method, which was designed to predict missing links in protein–protein association networks, capturing implicit local and global (i.e. embedding-based) graph properties.

    Results

    GLIDER outperforms competing methods on the task of predicting GO functional labels in cross-validation on a heterogeneous collection of four human protein–protein association networks derived from the 2016 DREAM Disease Module Identification Challenge, and also on three different protein–protein association networks built from the STRING database. We show that this is due to the strong functional enrichment that is present in the local GLIDER neighborhood in multiple different types of protein–protein association networks. Furthermore, we introduce the GLIDER graph neighborhood as a way for biologists to visualize the local neighborhood of a disease gene. As an application, we look at the local GLIDER neighborhoods of a set of known Parkinson’s Disease GWAS genes, rediscover many genes which have known involvement in Parkinson’s disease pathways, plus suggest some new genes to study.

    Availability and implementation

    All code is publicly available and can be accessed here: https://github.com/kap-devkota/GLIDER.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less