skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Reducing the Complexity of Fingerprinting-Based Positioning using Locality-Sensitive Hashing
Localization of wireless transmitters based on channel state information (CSI) fingerprinting finds widespread use in indoor as well as outdoor scenarios. Fingerprinting localization first builds a database containing CSI with measured location information. One then searches for the most similar CSI in this database to approximate the position of wireless transmitters. In this paper, we investigate the efficacy of locality-sensitive hashing (LSH) to reduce the complexity of the nearest neighbor- search (NNS) required by conventional fingerprinting localization systems. More specifically, we propose a low-complexity and memory efficient LSH function based on the sum-to-one (STOne) transform and use approximate hash matches. We evaluate the accuracy and complexity (in terms of the number of searches and storage requirements) of our approach for line-of-sight (LoS) and non-LoS channels, and we show that LSH enables low-complexity fingerprinting localization with comparable accuracy to methods relying on exact NNS or deep neural networks.  more » « less
Award ID(s):
1824379 1740286
PAR ID:
10189612
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Reducing the Complexity of Fingerprinting-Based Positioning using Locality-Sensitive Hashing
Page Range / eLocation ID:
1086 to 1090
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Channel state information (CSI)-based fingerprinting via neural networks (NNs) is a promising approach to enable accurate indoor and outdoor positioning of user equipments (UEs), even under challenging propagation conditions. In this paper, we propose a positioning pipeline for wireless LAN MIMO-OFDM systems which uses uplink CSI measurements obtained from one or more unsynchronized access points (APs). For each AP receiver, novel features are first extracted from the CSI that are robust to system impairments arising in real-world transceivers. These features are the inputs to a NN that extracts a probability map indicating the likelihood of a UE being at a given grid point. The NN output is then fused across multiple APs to provide a final position estimate. We provide experimental results with real-world indoor measurements under line-of-sight (LoS) and non-LoS propagation conditions for an 80 MHz bandwidth IEEE 802.11ac system using a two-antenna transmit UE and two AP receivers each with four antennas. Our approach is shown to achieve centimeter-level median distance error, an order of magnitude improvement over a conventional baseline. 
    more » « less
  2. Indoor localization is emerging as an important application domain for enhanced navigation (or tracking) of people and assets in indoor locales such as buildings, malls, and underground mines. Most indoor localization solutions proposed in prior work do not deliver good accuracy without expensive infrastructure (and even then, the results may lack consistency). Ambient wireless received signal strength indication (RSSI) based fingerprinting using smart mobile devices is a low-cost approach to the problem. However, creating an accurate ‘fingerprinting-only’ solution remains a challenge. This paper presents a novel approach to transform Wi-Fi signatures into images, to create a scalable fingerprinting framework based on Convolutional Neural Networks (CNNs). Our proposed CNN based indoor localization framework (CNN-LOC) is validated across several indoor environments and shows improvements over the best known prior works, with an average localization error of < 2 meters. 
    more » « less
  3. The proliferation of low-end low-power internet-of-things (IoT) devices in smart environments necessitates secure identification and authentication of these devices via low-overhead fingerprinting methods. Previous work typically utilizes characteristics of the device's wireless modulation (WiFi, BLE, etc.) in the spectrum, or more recently, electromagnetic emanations from the device's DRAM to perform fingerprinting. The problem is that many devices, especially low-end IoT/embedded systems, may not have transmitter modules, DRAM, or other complex components, therefore making fingerprinting infeasible or challenging. To address this concern, we utilize electromagnetic emanations derived from the processor's clock to fingerprint. We present Digitus, an emanations-based fingerprinting system that can authenticate IoT devices at range. The advantage of Digitus is that we can authenticate low-power IoT devices using features intrinsic to their normal operation without the need for additional transmitters and/or other complex components such as DRAM. Our experiments demonstrate that we achieve ≥ 95% accuracy on average, applicability in a wide range of IoT scenarios (range ≥ 5m, non-line-of-sight, etc.), as well as support for IoT applications such as finding hidden devices. Digitus represents a low-overhead solution for the authentication of low-end IoT devices. 
    more » « less
  4. We introduce a fundamentally new approach to wireless authentication and fingerprinting based on the unique spectral footprints induced by the geometry of the leakage aperture in the leaky THz waveguides transmitters. 
    more » « less
  5. Wireless links using massive MIMO transceivers are vital for next generation wireless communications networks. Precoding in Massive MIMO transmission requires accurate downlink channel state information (CSI). Many recent works have effectively applied deep learning (DL) to jointly train UE-side compression networks for delay domain CSI and a BS-side decoding scheme. Vitally, these works assume that the full delay domain CSI is available at the UE, but in reality, the UE must estimate the delay domain based on a limited number of frequency domain pilots. In this work, we propose a linear pilot-to-delay estimator (P2DE) that acquires the truncated delay CSI via sparse frequency pilots. We show the accuracy of the P2DE under frequency downsampling, and we demonstrate the P2DE’s efficacy when utilized with existing CSI estimation networks. Additionally, we propose to use trainable compressed sensing (CS) networks in a differential encoding network for time-varying CSI estimation, and we propose a new network, MarkovNet-ISTA-ENet (MN-IE), which combines a CS network for initial CSI estimation and multiple autoencoders to estimate the error terms. We demonstrate that MN-IE has better asymptotic performance than networks comprised of only one type of network. 
    more » « less