Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The ability to make controlled patterns of magnetic structures within a nonmagnetic background is essential for several types of existing and proposed technologies. Such patterns provide the foundation of magnetic memory and logic devices, allow the creation of artificial spin‐ice lattices, and enable the study of magnon propagation. Here, a novel approach for magnetic patterning that allows repeated creation and erasure of arbitrary shapes of thin‐film ferromagnetic structures is reported. This strategy is enabled by epitaxial Fe0.52Rh0.48thin films designed so that both ferromagnetic and antiferromagnetic phases are bistable at room temperature. Starting with the film in a uniform antiferromagnetic state, the ability to write arbitrary patterns of the ferromagnetic phase is demonstrated by local heating with a focused laser. If desired, the results can then be erased by cooling below room temperature and the material repeatedly re‐patterned.more » « less
-
Mn4N is a compound magnetic material that can be grown using MBE while exhibiting several desirable magnetic properties such as strong perpendicular magnetic anisotropy, low saturation magnetization, large domain size, and record high domain wall velocities. In addition to its potential for spintronic applications exploiting spin orbit torque with epitaxial topological insulator/ferromagnet bilayers, the possibility of integrating Mn4N seamlessly with the wide bandgap semiconductors GaN and SiC provides a pathway to merge logic, memory and communication components. We report a comparative study of MBE grown Mn4N thin films on four crystalline substrates: cubic MgO, and hexagonal GaN, SiC and sapphire. Under similar growth conditions, the Mn4N film is found to grow single crystalline on MgO and SiC, polycrystalline on GaN, and amorphous on sapphire. The magnetic properties vary on the substrates and correlate to the structural properties. Interestingly, the field dependent anomalous Hall resistance of Mn4N on GaN shows different behavior from other substrates such as a flipped sign of the anomalous Hall resistance.more » « less
An official website of the United States government
