skip to main content

Title: The X-ray View of Merger-Induced AGN Activity at Low Redshift
Abstract Galaxy mergers are predicted to trigger accretion onto the central supermassive black holes, with the highest rates occurring during final coalescence. Previously, we have shown elevated rates of both optical and mid-IR selected active galactic nuclei (AGN) in post-mergers, but to date the prevalence of X-ray AGN has not been examined in the same systematic way. We present XMM-Newton data of 43 post-merger galaxies selected from the Sloan Digital Sky Survey along with 430 non-interacting control galaxies matched in stellar mass, redshift, and environment in order to test for an excess of hard X-ray (2–10 keV) emission in post-mergers attributable to triggered AGN. We find 2 X-ray detections in the post-mergers ($4.7^{+9.3}_{-3.8}\%$) and 9 in the controls ($2.1^{+1.5}_{-1.0}\%$), an excess of $2.22^{+4.44}_{-2.22}$, where the confidence intervals are 90%. While we therefore do not find statistically significant evidence for an X-ray AGN excess in post-mergers (p = 0.26), we find a factor of ∼17 excess of mid-IR AGN in our sample, consistent with past work and inconsistent with the observed X-ray excess (p = 2.7 × 10−4). Dominant, luminous AGN are therefore more frequent in post-mergers, and the lack of a comparable excess of 2–10 keV X-ray AGN suggests that AGN in more » post-mergers are more likely to be heavily obscured. Our results are consistent with the post-merger stage being characterised by enhanced AGN fueling, heavy AGN obscuration, and more intrinsically luminous AGN, in line with theoretical predictions. « less
; ; ;
Award ID(s):
Publication Date:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We investigate the role of galaxy mergers in triggering active galactic nuclei (AGN) in the nearby universe. Our analysis is based on a sample of 79 post-merger remnant galaxies with deep X-ray observations from Chandra/XMM-Newton capable of detecting a low-luminosity AGN of ≥1040.5erg s−1. This sample is derived from a visually classified, volume-limited sample of 807 post-mergers identified in the Sloan Digital Sky Survey Data Release 14 with logM*/M≥ 10.5 and 0.02 ≤z≤ 0.06. We find that the X-ray AGN fraction in this sample is 55.7% ± 5.6% compared to 23.6% ± 2.8% for a mass- and redshift-matched noninteracting control sample. The multiwavelength AGN fraction (identified as an AGN in one of X-ray, IR, radio or optical diagnostics) for post-mergers is 76.6% ± 4.8% compared to 39.1% ± 3.2% for controls. Thus post-mergers exhibit a high overall AGN fraction with an excess between 2 and 4 depending on the AGN diagnostics used. In addition, we find most optical, IR, and radio AGN are also identified as X-ray AGN while a large fraction of X-ray AGN are not identified in any other diagnostic. This highlights the importance of deep X-ray imaging to identify AGN. We find that the X-ray AGNmore »fraction of post-mergers is independent of the stellar mass above logM*/M≥ 10.5 unlike the trend seen in control galaxies. Overall, our results show that post-merger galaxies are a good tracer of the merger–AGN connection and strongly support the theoretical expectations that mergers trigger AGN.

    « less
  2. ABSTRACT The merger of two or more galaxies can enhance the inflow of material from galactic scales into the close environments of active galactic nuclei (AGNs), obscuring and feeding the supermassive black hole (SMBH). Both recent simulations and observations of AGN in mergers have confirmed that mergers are related to strong nuclear obscuration. However, it is still unclear how AGN obscuration evolves in the last phases of the merger process. We study a sample of 60 luminous and ultra-luminous IR galaxies (U/LIRGs) from the GOALS sample observed by NuSTAR. We find that the fraction of AGNs that are Compton thick (CT; $N_{\rm H}\ge 10^{24}\rm \, cm^{-2}$) peaks at $74_{-19}^{+14}{{\ \rm per\ cent}}$ at a late merger stage, prior to coalescence, when the nuclei have projected separations (dsep) of 0.4–6 kpc. A similar peak is also observed in the median NH [$(1.6\pm 0.5)\times 10^{24}\rm \, cm^{-2}$]. The vast majority ($85^{+7}_{-9}{{\ \rm per\ cent}}$) of the AGNs in the final merger stages (dsep ≲ 10 kpc) are heavily obscured ($N_{\rm H}\ge 10^{23}\rm \, cm^{-2}$), and the median NH of the accreting SMBHs in our sample is systematically higher than that of local hard X-ray-selected AGN, regardless of the merger stage. This implies that thesemore »objects have very obscured nuclear environments, with the $N_{\rm H}\ge 10^{23}\rm \, cm^{-2}$ gas almost completely covering the AGN in late mergers. CT AGNs tend to have systematically higher absorption-corrected X-ray luminosities than less obscured sources. This could either be due to an evolutionary effect, with more obscured sources accreting more rapidly because they have more gas available in their surroundings, or to a selection bias. The latter scenario would imply that we are still missing a large fraction of heavily obscured, lower luminosity ($L_{2-10}\lesssim 10^{43}\rm \, erg\, s^{-1}$) AGNs in U/LIRGs.« less
  3. The north ecliptic pole (NEP) is an important region for extragalactic surveys. Deep and wide contiguous surveys are being performed by several space observatories, most currently with the eROSITA telescope. Several more are planned for the near future. We analyse all the ROSAT pointed and survey observations in a region of 40 deg 2 around the NEP, restricting the ROSAT field of view to the inner 30′ radius. We obtain an X-ray catalogue of 805 sources with 0.5−2 keV fluxes > 2.9 × 10 −15 erg cm −2 s −1 , about a factor of three deeper than the ROSAT All-Sky Survey in this field. The sensitivity and angular resolution of our data are comparable to the eROSITA All-Sky Survey expectations. The 50% position error radius of the sample of X-ray sources is ∼10″. We use HEROES optical and near-infrared imaging photometry from the Subaru and Canada/France/Hawaii telescopes together with GALEX, SDSS, Pan-STARRS, and WISE catalogues, as well as images from a new deep and wide Spitzer survey in the field to statistically identify the X-ray sources and to calculate photometric redshifts for the candidate counterparts. In particular, we utilize mid-infrared (mid-IR) colours to identify active galactic nucleus (AGN) X-raymore »counterparts. Despite the relatively large error circles and often faint counterparts, together with confusion issues and systematic errors, we obtain a rather reliable catalogue of 766 high-quality optical counterparts, corresponding redshifts and optical classifications. The quality of the dataset is sufficient to look at ensemble properties of X-ray source classes. In particular we find a new population of luminous absorbed X-ray AGN at large redshifts, identified through their mid-IR colours. This populous group of AGN was not recognized in previous X-ray surveys, but could be identified in our work due to the unique combination of survey solid angle, X-ray sensitivity, and quality of the multi-wavelength photometry. We also use the WISE and Spitzer photometry to identify a sample of 185 AGN selected purely through their mid-IR colours, most of which are not detected by ROSAT. Their redshifts and upper limits to X-ray luminosity and X-ray–to–optical flux ratios are even higher than for the new class of X-ray selected luminous type 2 AGN (AGN2); they are probably a natural extension of this sample. This unique dataset is important as a reference sample for future deep surveys in the NEP region, in particular for eROSITA and also for Euclid and SPHEREX. We predict that most of the absorbed distant AGN should be readily picked up by eROSITA, but they require sensitive mid-IR imaging to be recognized as optical counterparts.« less
  4. Abstract

    Dual active galactic nuclei (AGNs), which are the manifestation of two actively accreting supermassive black holes (SMBHs) hosted by a pair of merging galaxies, are a unique laboratory for studying the physics of SMBH feeding and feedback during an indispensable stage of galaxy evolution. In this work, we present NOEMA CO(2–1) observations of seven kiloparsec-scale dual-AGN candidates drawn from a recent Chandra survey of low redshift, optically classified AGN pairs. These systems are selected because they show unexpectedly low 2–10 keV X-ray luminosities for their small physical separations signifying an intermediate-to-late stage of merger. Circumnuclear molecular gas traced by the CO(2–1) emission is significantly detected in six of the seven pairs and 10 of the 14 nuclei, with an estimated mass ranging between (0.2–21) × 109M. The primary nuclei, i.e., the ones with the higher stellar velocity dispersion, tend to have a higher molecular gas mass than the secondary. Most CO-detected nuclei show a compact morphology, with a velocity field consistent with a kiloparsec-scale rotating structure. The inferred hydrogen column densities range between 5 × 1021–2 × 1023cm−2, but mostly at a few times 1022cm−2, in broad agreement with those derived from X-ray spectral analysis. Together with the relativelymore »weak mid-infrared emission, the moderate column density argues against the prevalence of heavily obscured, intrinsically luminous AGNs in these seven systems, but favors a feedback scenario in which AGN activity triggered by a recent pericentric passage of the galaxy pair can expel circumnuclear gas and suppress further SMBH accretion.

    « less

    The kinematic disturbances associated with major galaxy mergers are known to produce gas inflows, which in turn may trigger accretion onto the supermassive black holes (SMBH) of the participant galaxies. While this effect has been studied in galaxy pairs, the frequency of active galactic nuclei (AGNs) in fully coalesced post-merger systems is poorly constrained due to the limited size or impurity of extant post-merger samples. Previously, we combined convolutional neural network (CNN) predictions with visual classifications to identify a highly pure sample of 699 post-mergers in deep r-band imaging. In the work presented here, we quantify the frequency of AGNs in this sample using three metrics: optical emission lines, mid-infrared (mid-IR) colour, and radio detection of low-excitation radio galaxies (LERGs). We also compare the frequency of AGNs in post-mergers to that in a sample of spectroscopically identified galaxy pairs. We find that AGNs identified by narrow-line optical emission and mid-IR colour have an increased incidence rate in post-mergers, with excesses of ~4 over mass- and redshift-matched controls. The optical and mid-IR AGN excesses in post-mergers exceed the values found for galaxy pairs, indicating that AGN activity in mergers peaks after coalescence. Conversely, we recover no significant excess of LERGsmore »in post-mergers or pairs. Finally, we find that the [O iii] luminosity (a proxy for SMBH accretion rate) in post-mergers that host an optical AGN is ~0.3 dex higher on average than in non-interacting galaxies with an optical AGN, suggesting that mergers generate higher accretion rates than secular triggering mechanisms.

    « less