skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Graph Structured Prediction Energy Networks
For joint inference over multiple variables, a variety of structured prediction techniques have been developed to model correlations among variables and thereby improve predictions. However, many classical approaches suffer from one of two primary drawbacks: they either lack the ability to model high-order correlations among variables while maintaining computationally tractable inference, or they do not allow to explicitly model known correlations. To address this shortcoming, we introduce ‘Graph Structured Prediction Energy Networks,’ for which we develop inference techniques that allow to both model explicit local and implicit higher-order correlations while maintaining tractability of inference. We apply the proposed method to tasks from the natural language processing and computer vision domain and demonstrate its general utility  more » « less
Award ID(s):
1725729
PAR ID:
10189958
Author(s) / Creator(s):
Date Published:
Journal Name:
Advances in Neural Information Processing Systems
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Simplicial neural networks (SNNs) have recently emerged as a new direction in graph learning which expands the idea of convolutional architectures from node space to simplicial complexes on graphs. Instead of predominantly assessing pairwise relations among nodes as in the current practice, simplicial complexes allow us to describe higher-order interactions and multi-node graph structures. By building upon connection between the convolution operation and the new block Hodge-Laplacian, we propose the first SNN for link prediction. Our new Block Simplicial Complex Neural Networks (BScNets) model generalizes existing graph convolutional network (GCN) frameworks by systematically incorporating salient interactions among multiple higher-order graph structures of different dimensions. We discuss theoretical foundations behind BScNets and illustrate its utility for link prediction on eight real-world and synthetic datasets. Our experiments indicate that BScNets outperforms the state-of-the-art models by a significant margin while maintaining low computation costs. Finally, we show utility of BScNets as a new promising alternative for tracking spread of infectious diseases such as COVID-19 and measuring the effectiveness of the healthcare risk mitigation strategies. 
    more » « less
  2. Windecker, Saras (Ed.)
    1. The ecological and environmental science communities have embraced machine learning (ML) for empirical modelling and prediction. However, going beyond prediction to draw insights into underlying functional relationships between response variables and environmental ‘drivers’ is less straightforward. Deriving ecological insights from fitted ML models requires techniques to extract the ‘learning’ hidden in the ML models. 2. We revisit the theoretical background and effectiveness of four approaches for deriving insights from ML: ranking independent variable importance (Gini importance, GI; permutation importance, PI; split importance, SI; and conditional permutation importance, CPI), and two approaches for inference of bivariate functional relationships (partial dependence plots, PDP; and accumulated local effect plots, ALE). We also explore the use of a surrogate model for visualization and interpretation of complex multi-variate relationships between response variables and environmental drivers. We examine the challenges and opportunities for extracting ecological insights with these interpretation approaches. Specifically, we aim to improve interpretation of ML models by investigating how effectiveness relates to (a) interpretation algorithm, (b) sample size and (c) the presence of spurious explanatory variables. 3. We base the analysis on simulations with known underlying functional relationships between response and predictor variables, with added white noise and the presence of correlated but non-influential variables. The results indicate that deriving ecological insight is strongly affected by interpretation algorithm and spurious variables, and moderately impacted by sample size. Removing spurious variables improves interpretation of ML models. Meanwhile, increasing sample size has limited value in the presence of spurious variables, but increasing sample size does improves performance once spurious variables are omitted. Among the four ranking methods, SI is slightly more effective than the other methods in the presence of spurious variables, while GI and SI yield higher accuracy when spurious variables are removed. PDP is more effective in retrieving underlying functional relationships than ALE, but its reliability declines sharply in the presence of spurious variables. Visualization and interpretation of the interactive effects of predictors and the response variable can be enhanced using surrogate models, including three-dimensional visualizations and use of loess planes to represent independent variable effects and interactions. 4. Machine learning analysts should be aware that including correlated independent variables in ML models with no clear causal relationship to response variables can interfere with ecological inference. When ecological inference is important, ML models should be constructed with independent variables that have clear causal effects on response variables. While interpreting ML models for ecological inference remains challenging, we show that careful choice of interpretation methods, exclusion of spurious variables and adequate sample size can provide more and better opportunities to ‘learn from machine learning’. 
    more » « less
  3. Probabilistic programming languages are valuable because they allow domain experts to express probabilistic models and inference algorithms without worrying about irrelevant details. However, for decades there remained an important and popular class of probabilistic inference algorithms whose efficient implementation required manual low-level coding that is tedious and error-prone. They are algorithms whose idiomatic expression requires random array variables that arelatentor whose likelihood isconjugate. Although that is how practitioners communicate and compose these algorithms on paper, executing such expressions requireseliminatingthe latent variables andrecognizingthe conjugacy by symbolic mathematics. Moreover, matching the performance of handwritten code requires speeding up loops by more than a constant factor. We show how probabilistic programs that directly and concisely express these desired inference algorithms can be compiled while maintaining efficiency. We introduce new transformations that turn high-level probabilistic programs with arrays into pure loop code. We then make great use of domain-specific invariants and norms to optimize the code, and to specialize and JIT-compile the code per execution. The resulting performance is competitive with manual implementations. 
    more » « less
  4. We combine weighting and Bayesian prediction in a unified approach to survey inference. The general principles of Bayesian analysis imply that models for survey outcomes should be conditional on all variables that affect the probability of inclusion. We incorporate all the variables that are used in the weighting adjustment under the framework of multilevel regression and poststratification, as a byproduct generating model-based weights after smoothing. We improve small area estimation by dealing with different complex issues caused by real-life applications to obtain robust inference at finer levels for subdomains of interest. We investigate deep interactions and introduce structured prior distributions for smoothing and stability of estimates. The computation is done via Stan and is implemented in the open-source R package rstanarm and available for public use. We evaluate the design-based properties of the Bayesian procedure. Simulation studies illustrate how the model-based prediction and weighting inference can outperform classical weighting. We apply the method to the New York Longitudinal Study of Wellbeing. The new approach generates smoothed weights and increases efficiency for robust finite population inference, especially for subsets of the population. 
    more » « less
  5. In this paper, we study the problem of inference in high-order structured prediction tasks. In the context of Markov random fields, the goal of a high-order inference task is to maximize a score function on the space of labels, and the score function can be decomposed into sum of unary and high-order potentials. We apply a generative model approach to study the problem of high-order inference, and provide a two-stage convex optimization algorithm for exact label recovery. We also provide a new class of hypergraph structural properties related to hyperedge expansion that drives the success in general high-order inference problems. Finally, we connect the performance of our algorithm and the hyperedge expansion property using a novel hypergraph Cheeger-type inequality. 
    more » « less