skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Exergy-Based Sustainability Analysis for Tile Production From Waste Plastics in Uganda
Abstract

This paper presents an exergy-based sustainability analysis of manufacturing roof tiles from plastic waste in Uganda. Exergy analyses measure the sustainability of industrial processes. This work focuses specifically on the developing country context and on utilizing waste material. A summary of the current plastic waste situation in Uganda, the environmental and health issues associated with plastic waste, current means of recycling plastic waste into new products, and an analysis of the Ugandan roofing market are presented. The motivation for this study is to examine the resources utilized to improve overall exergy efficiency, reduce production costs, and reduce negative environmental impacts. The company, Resintile, is the only manufacturer of roof tiles from plastic waste in Uganda. Their tiles comprised mainly of sand and plastic waste are manufactured in an industrialized process involving drying, extrusion, and pressing. The exergy consumed at each stage including transportation is presented. The extruder consumes the majority of the exergy, but wrapping insulation around the barrel could save over 3 MJ, and a heat engine could provide over 7.5 MJ of usable exergy. The total exergy consumed to produce one batch of seventy-five tiles is over 122 MJ, the potentially recoverable exergy is over 5 MJ (4.3% of consumed exergy), and the realistic recoverable exergy is nearly 10.7 MJ (8.7% of consumed exergy). The realistic can be greater than the potential by adding a heat engine to the sand drying process to generate usable exergy rather than merely recover consumed exergy. Resintile’s plastic roof tiles save a net 86.3 kg of CO2 from entering the atmosphere per batch of tiles and adoption of the suggested improvements to the manufacturing process would save an additional 3.8 kg of CO2 per batch.

 
more » « less
Award ID(s):
1633740
PAR ID:
10190185
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the ASME 2019 13th International Conference on Energy Sustainability collocated with the ASME 2019 Heat Transfer Summer Conference. ASME 2019 13th International Conference on Energy Sustainability
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This paper presents an exergy-based sustainability analysis of manufacturing roof tiles from plastic waste in Uganda. This work focuses specifically on the developing country context and on utilizing waste material. A summary of the current Ugandan plastic waste situation, environmental and health issues associated with plastic waste, current means of recycling plastic waste into new products, and an analysis of the Ugandan roofing market is presented. The total exergy consumed to produce one batch of 75 tiles is over 240 MJ, the potentially recoverable exergy is nearly 17 MJ (8% of consumed exergy), and the realistic recoverable exergy is over 6.4 MJ (nearly 3% of consumed exergy). Recycling plastic waste into roof tiles saves a net 188 kg of CO2 from entering the atmosphere per batch when compared with open burning. If all of Kampala’s plastic waste was converted to roofing tiles, nearly 560 tonnes of CO2 could be saved per year. 
    more » « less
  2. Thermoelectric (TE) waste heat recovery has attracted significant attention over the past decades, owing to its direct heat-to-electricity conversion capability and reliable operation. However, methods for application-specific, system-level TE design have not been thoroughly investigated. This work provides detailed design optimization strategies and exergy analysis for TE waste heat recovery systems. To this end, we propose the use of TE system equipped on the exhaust of a gas turbine power plant for exhaust waste heat recovery and use it as a case study. A numerical tool has been developed to solve the coupled charge and heat current equations with temperature-dependent material properties and convective heat transfer at the interfaces with the exhaust gases at the hot side and with the ambient air at the heat sink side. Our calculations show that at the optimum design with 50% fill factor and 6 mm leg thickness made of state-of-the-art Bi2Te3 alloys, the proposed system can reach power output of 10.5 kW for the TE system attached on a 2 m-long, 0.5 × 0.5 m2-area exhaust duct with system efficiency of 5% and material cost per power of 0.23 $/W. Our extensive exergy analysis reveals that only 1% of the exergy content of the exhaust gas is exploited in this heat recovery process and the exergy efficiency of the TE system can reach 8% with improvement potential of 85%.

     
    more » « less
  3. In this study, the effect of hydrothermal liquefaction (HTL) of waste PVC was investigated in the presence of acidic hydrochar. The hydrochar was prepared by hydrothermal carbonization of pineapple waste at 250 °C and at 1 h in the presence of citric acid. Hydrochar was acidic, stable, and porous and contained acidic functional groups. Hydrochar was co-fed with PVC during HTL to enhance HTL conversion and quality of the plastic crude oil. HTL experiments were performed at 300–350 °C, 0.25–4 h of reaction times, and 0–20 wt% hydrochar-to-PVC ratio. The plastic crude oil was separated from the solid residue to evaluate HTL conversion and to analyze elemental compositions, boiling point distribution, alteration of chemical bonds, and chemical compositions. The results showed that acidic hydrochar enhances HTL conversion with a maximum value of 28.75 at 5 wt% hydrochar content at 350 °C and 0.5 h. Furthermore, plastic crude oils contained no chloride but contained significantly high carbon and hydrogen, resulting in a higher heating value of up to 36.43 MJ/kg. The major component of the plastic crude oil was 3, 5 dimethylphenol produced ranging from 61.4 to 86.4% (percentage of total identified area) according to gas chromatography mass spectroscopy (GCMS) data.

     
    more » « less
  4. Additive manufacturing, otherwise known as three-dimensional (3D) printing, is a rapidly growing technique that is increasingly used for the production of polymer products, resulting in an associated increase in plastic waste generation. Waste from a particular class of 3D-printing, known as vat photopolymerization, is of particular concern, as these materials are typically thermosets that cannot be recycled or reused. Here, we report a mechanical recycling process that uses cryomilling to generate a thermoset powder from photocured parts that can be recycled back into the neat liquid monomer resin. Mechanical recycling with three different materials is demonstrated: two commercial resins with characteristic brittle and elastic mechanical properties and a third model material formulated in-house. Studies using photocured films showed that up to 30 wt% of the model material could be recycled producing a toughness of 2.01 ± 0.55 MJ/m3, within error of neat analogues (1.65 ± 0.27 MJ/m3). Using dynamic mechanical analysis and atomic force microscopy-based infrared spectroscopy, it was determined that monomers diffuse into the recycled powder particles, creating interpenetrating networks upon ultraviolet (UV) exposure. This process mechanically adheres the particles to the matrix, preventing them from acting as failure sites under a tensile load. Finally, 3D-printing of the commercial brittle material with 10 wt% recycle content produced high quality parts that were visually similar. The maximum stress (46.7 ± 6.2 MPa) and strain at break (11.6 ± 2.3%) of 3D-printed parts with recycle content were within error the same as neat analogues (52.0 ± 1.7 MPa; 13.4 ± 1.8%). Overall, this work demonstrates mechanical recycling of photopolymerized thermosets and shows promise for the reuse of photopolymerized 3D-printing waste. 
    more » « less
  5. Abstract

    The global production and consumption of plastics has increased at an alarming rate over the last few decades. The accumulation of pervasive and persistent waste plastic has concomitantly increased in landfills and the environment. The societal, ecological, and economic problems of plastic waste/pollution demand immediate and decisive action. In 2015, only 9% of plastic waste was successfully recycled in the United States. The major current recycling processes focus on the mechanical recycling of plastic waste; however, even this process is limited by the sorting/pretreatment of plastic waste and degradation of plastics during the process. An alternative to mechanical processes is chemical recycling of plastic waste. Efficient chemical recycling would allow for the production of feedstocks for various uses including fuels and chemical feedstocks to replace petrochemicals. This review focuses on the most recent advances for the chemical recycling of three major polymers found in plastic waste: PET, PE, and PP. Commercial processes for recycling hydrolysable polymers like polyesters or polyamides, polyolefins, or mixed waste streams are also discussed.

     
    more » « less