skip to main content


Title: ASSISTments Longitudinal Data Mining Competition Special Issue: A Preface.
This special issue includes papers from some of the leading competitors in the ASSISTments Longitudinal Data Mining Competition 2017, as well as some research from non-competitors, using the same data set. In this competition, participants attempted to predict whether students would choose a career in a STEM field or not, making this prediction using a click-stream dataset from middle school students working on math assignments inside ASSISTments, an online tutoring platform. At the conclusion of the competition on December 3rd, 2017, there were 202 participants, 74 of whom submitted predictions at least once. In this special issue, some of the leading competitors present their results and what they have learned about the link between behavior in online learning and future STEM career development.  more » « less
Award ID(s):
1636847 1661987 1931523 1724889 1931419
NSF-PAR ID:
10190344
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of educational data mining
Volume:
12
Issue:
2
ISSN:
2157-2100
Page Range / eLocation ID:
I-Xi
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. There is an urgent need for young people to prepare for and pursue engineering careers. Engineering occupations comprise 20% of the science, technology, engineering, and math (STEM) jobs in the U.S. (Bureau of Labor Statistics, 2017). The average wage for STEM occupations is nearly double that of non-STEM occupations, with engineers commanding some of the highest salaries in STEM (Bureau of Labor Statistics, 2017). Moreover, engineering occupations are expected to be some of the fastest growing occupations in the U.S. over the next 10 years (Occupational Outlook Handbook, 2018); yet, there are current and projected shortages of workers in the engineering workforce so that many engineering jobs will go unfilled (Bureau of Labor Statistics, 2015) Native Americans are highly underrepresented in engineering (NSF, 2017). They comprise approximately 2% of the U.S. population (U.S. Census Bureau, 2013), but only 0.3% of engineers (Sandia National Laboratories, 2016). Thus, they are not positioned to attain a high-demand, high-growth, highly rewarding engineering job, nor to provide engineering expertise to meet the needs of their own communities or society at large. The purpose of this study was to examine factors that encourage or discourage Native American college students’ entry into engineering. Using Social Cognitive Career Theory (SCCT; Lent, Brown, & Hackett, 1994; 2000), we examined the correlates of these students’ interests and efficacy in engineering to accomplish this goal. Participants were N = 30 Native American engineering college students from the Midwest; 65% men, 30% women, and 4% other. The mean age was 25.87 (SD = 6.98). Data were collected over the period of one year on college campuses and at professional development conferences via an online survey hosted on Qualtrics. Three scales were used in the study: Mapping Vocational Challenges – Engineering (Lapan & Turner, 2000, 2016), the Perceptions of Barriers Scale (POB; McWhirter, 1998), and the Structured Career Development Inventory (Lapan & Turner, 2004). An a priori Power Analysis (f2 = .50; α = .05, 1 – β = .90) indicated our sample size was adequate. For all scales, full-scale Cronbach’s α reliabilities ranged from .82 to .86. Results of correlation analyses indicated that engineering efficacy was negatively related to lack of academic preparation (r = -.50, p = .016), and perceived lack of ability (r = -.53, p = .009), and positively related to academic achievement (r = .43, p = .043), career exploration (r = .47, p = .022), and approaching engineering studies proactively (r = .53, p = .009). Engineering interests were negatively related to perceived lack of ability (r = -.55, p = .007), and positively to proactivity (r = .42, p = .044), and academic achievement (r = .45, p = .033). Engineering interests were also related to support from parents, teachers, and friends to study engineering and pursue an engineering career. There was no significant relationship between engineering interests and engineering efficacy among these students. The relevance of these results will be discussed in light of SCCT, and recommendations for practice will be included. 
    more » « less
  2. POSTER. Presented at the Symposium (9/12/2019) Abstract: The Academy of Engineering Success (AcES) employs literature-based, best practices to support and retain underrepresented students in engineering through graduation with the ultimate goal of diversifying the engineering workforce. AcES was established in 2012 and has been supported via NSF S-STEM award number 1644119 since 2016. The 2016, 2017, and 2018 cohorts consist of 12, 20, and 22 students, respectively. Five S-STEM supported scholarships were awarded to the 2016 cohort, seven scholarships were awarded to students from the 2017 cohort, and six scholarships were awarded to students from the 2018 cohort. AcES students participate in a one-week summer bridge experience, a common fall semester course focused on professional development, and a common spring semester course emphasizing the role of engineers in societal development. Starting with the summer bridge experience, and continuing until graduation, students are immersed in curricular and co-curricular activities with the goals of fostering feelings of institutional inclusion and belonging in engineering, providing academic support and student success skills, and professional development. The aforementioned goals are achieved by providing (1) opportunities for faculty-student, student-student, and industry mentor-student interaction, (2) academic support, and student success education in areas such as time management and study skills, and (3) facilitated career and major exploration. Four research questions are being examined, (1) What is the relationship between participation in the AcES program and participants’ academic success?, (2) What aspects of the AcES program most significantly impact participants’ success in engineering, (3) How do AcES students seek to overcome challenges in studying engineering, and (4) What is the longitudinal impact of the AcES program in terms of motivation, perceptions, feelings of inclusion, outcome expectations of the participants and retention? Students enrolled in the AcES program participate in the GRIT, LAESE, and MSLQ surveys, focus groups, and one-on-one interviews at the start and end of each fall semester and at the end of the spring semester. The surveys provide a measure of students’ GRIT, general self-efficacy, engineering self-efficacy, test anxiety, math outcome efficacy, intrinsic value of learning, inclusion, career expectations, and coping efficacy. Focus group and interview responses are analyzed in order to answer research questions 2, 3, and 4. Survey responses are analyzed to answer research question 4, and institutional data such as GPA is used to answer research question 1. An analysis of the 2017 AcES cohort survey responses produced a surprising result. When the responses of AcES students who retained were compared to the responses of AcES students who left engineering, those who left engineering had higher baseline values of GRIT, career expectations, engineering self-efficacy, and math outcome efficacy than those students who retained. A preliminary analysis of the 2016, 2017, and 2018 focus group and one-on-one interview responses indicates that the Engineering Learning Center, tutors, organized out of class experiences, first-year seminar, the AcES cohort, the AcES summer bridge, the AcES program, AcES Faculty/Staff, AcES guest lecturers, and FEP faculty/Staff are viewed as valuable by students and cited with contributing to their success in engineering. It is also evident that AcES students seek help from peers, seek help from tutors, use online resources, and attend office hours to overcome their challenges in studying engineering. 
    more » « less
  3. In this paper, we describe our solution to predict student STEM career choices during the 2017 ASSISTments Datamining Competition. We built a machine learning system that automatically reformats the data set, generates new features and prunes redundant ones, and performs model and feature selection. We designed the system to automatically find a model that optimizes prediction performance, yet the final model is a simple logistic regression that allows researchers to discover important features and study their effects on STEM career choices. We also compared our method to other methods, which revealed that the key to good prediction is proper feature enrichment in the beginning stage of the data analysis, while feature selection in a later stage allows a simpler final model. 
    more » « less
  4. Despite limited success in broadening participation in engineering with rural and Appalachian youth, there remain challenges such as misunderstandings around engineering careers, misalignments with youth’s sociocultural background, and other environmental barriers. In addition, middle school science teachers may be unfamiliar with engineering or how to integrate engineering concepts into science lessons. Furthermore, teachers interested in incorporating engineering into their curriculum may not have the time or resources to do so. The result may be single interventions such as a professional development workshop for teachers or a career day for students. However, those are unlikely to cause major change or sustained interest development. To address these challenges, we have undertaken our NSF ITEST project titled, Virginia Tech Partnering with Educators and Engineers in Rural Schools (VT PEERS). Through this project, we sought to improve youth awareness of and preparation for engineering related careers and educational pathways. Utilizing regular engagement in engineering-aligned classroom activities and culturally relevant programming, we sought to spark an interest with some students. In addition, our project involves a partnership with teachers, school districts, and local industry to provide a holistic and, hopefully, sustainable influence. By engaging over time we aspired to promote sustainability beyond this NSF project via increased teacher confidence with engineering related activities, continued integration within their science curriculum, and continued relationships with local industry. From the 2017-2020 school years the project has been in seven schools across three rural counties. Each year a grade level was added; that is, the teachers and students from the first year remained for all three years. Year 1 included eight 6th grade science teachers, year 2 added eight 7th grade science teachers, and year 3 added three 8th grade science teachers and a career and technology teacher. The number of students increased from over 500 students in year 1 to over 2500 in year 3. Our three industry partners have remained active throughout the project. During the third and final year in the classrooms, we focused on the sustainable aspects of the project. In particular, on how the intervention support has evolved each year based on data, support requests from the school divisions, and in scaffolding “ownership” of the engineering activities. Qualitative data were used to support our understanding of teachers’ confidence to incorporate engineering into their lessons plans and how their confidence changed over time. Noteworthy, our student data analysis resulted in an instrument change for the third year; however due to COVID, pre and post data was limited to schools who taught on a semester basis. Throughout the project we have utilized the ITEST STEM Workforce Education Helix model to support a pragmatic approach of our research informing our practice to enable an “iterative relationship between STEM content development and STEM career development activities… within the cultural context of schools, with teachers supported by professional development, and through programs supported by effective partnerships.” For example, over the course of the project, scaffolding from the University leading interventions to teachers leading interventions occurred. 
    more » « less
  5. Designing a Curriculum to Broaden Middle School Students’ Ideas and Interest in Engineering As the 21st century progresses, engineers will play critical roles in addressing complex societal problems such as climate change and nutrient pollution. Research has shown that more diverse teams lead to more creative and effective solutions (Smith-Doerr et al., 2017). However, while some progress has been made in increasing the number of women and people of color, 83% of employed engineers are male and 68% of engineers are white (NSF & NCSES, 2019). Traditional K–12 approaches to engineering often emphasize construction using a trial-and-error approach (ASEE, 2020). Although this approach may appeal to some students, it may alienate other students who then view engineering simply as “building things.” Designing engineering experiences that broaden students’ ideas about engineering, may help diversify the students entering the engineering pipeline. To this end, we developed Solving Community Problems with Engineering (SCoPE), an engineering curriculum that engages seventh-grade students in a three-week capstone project focusing on nutrient pollution in their local watershed. SCoPE engages students with the problem through local news articles about nutrient pollution and images of algae covered lakes, which then drives the investigation into the detrimental processes caused by excess nutrients entering bodies of water from sources such as fertilizer and wastewater. Students research the sources of nutrient pollution and potential solutions, and use simulations to investigate key variables and optimize the types of strategies for effectively decreasing and managing nutrient pollution to help develop their plans. Throughout the development process, we worked with a middle school STEM teacher to ensure the unit builds upon the science curriculum and the activities would be engaging and meaningful to students. The problem and location were chosen to illustrate that engineers can solve problems relevant to rural communities. Since people in rural locations tend to remain very connected to their communities throughout their lives, it is important to illustrate that engineering could be a relevant and viable career near home. The SCoPE curriculum was piloted with two teachers and 147 seventh grade students in a rural public school. Surveys and student drawings of engineers before and after implementation of the curriculum were used to characterize changes in students’ interest and beliefs about engineering. After completing the SCoPE curriculum, students’ ideas about engineers’ activities and the types of problems they solve were broadened. Students were 53% more likely to believe that engineers can protect the environment and 23% more likely to believe that they can identify problems in the community to solve (p < 0.001). When asked to draw an engineer, students were 1.3 times more likely to include nature/environment/agriculture (p < 0.01) and 3 times more likely to show engineers helping people in the community (p< 0.05) Additionally, while boys’ interest in science and engineering did not significantly change, girls’ interest in engineering and confidence in becoming an engineer significantly increased (Cohen’s D = 0.28, p<0.05). The SCoPE curriculum is available on PBS LearningMedia: https://www.pbslearningmedia.org/collection/solving-community-problems-with-engineering/ This project was funded by NSF through the Division of Engineering Education and Centers, Research in the Formation of Engineers program #202076. References American Society for Engineering Education. (2020). Framework for P-12 Engineering Learning. Washington, DC. DOI: 10.18260/1-100-1153 National Science Foundation, National Center for Science and Engineering Statistics. (2019). Women, Minorities, and Persons with Disabilities in Science and Engineering: 2019. Special Report NSF 17-310. Arlington, VA. https://ncses.nsf.gov/pubs/nsf21321/. Smith-Doerr, L., Alegria, S., & Sacco, T. (2017). How Diversity Matters in the US Science and Engineering Workforce: A Critical Review Considering Integration in Teams, Fields, and Organizational Contexts, Engaging Science, Technology, and Society 3, 139-153. 
    more » « less