skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 12 until 9:00 AM ET on Saturday, July 13 due to maintenance. We apologize for the inconvenience.

Title: Binary Quilting to Generate Patched Executables without Compilation
When applying patches, or dealing with legacy software, users are often reluctant to change the production executables for fear of unwanted side effects. This results in many active systems running vulnerable or buggy code even though the problems have already been identified and resolved by developers. Furthermore when dealing with old or proprietary software, users can't view or compile source code so any attempts to change the application after distribution requires binary level manipulation. We present a new technique we call binary quilting that allows users to apply the designated minimum patch that preserves core semantics without fear of unwanted side effects introduced either by the build process or by additional code changes. Unlike hot patching, binary quilting is a one-time procedure that creates an entirely new reusable binary. Our case studies show the efficacy of this technique on real software in real patching scenarios.  more » « less
Award ID(s):
1842456 1815494 1563555
Author(s) / Creator(s):
Date Published:
Journal Name:
2020 ACM Workshop on Forming an Ecosystem Around Software Transformation
Page Range / eLocation ID:
3 to 8
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Enterprise software updates depend on the interaction between user and developer organizations. This interaction becomes especially complex when a single developer organization writes software that services hundreds of different user organizations. Miscommunication during patching and deployment efforts lead to insecure or malfunctioning software installations. While developers oversee the code, the update process starts and ends outside their control. Since developer test suites may fail to capture buggy behavior finding and fixing these bugs starts with user generated bug reports and 3rd party disclosures. The process ends when the fixed code is deployed in production. Any friction between user, and developer results in a delay patching critical bugs. Two common causes for friction are a failure to replicate user specific circumstances that cause buggy behavior and incompatible software releases that break critical functionality. Existing test generation techniques are insufficient. They fail to test candidate patches for post-deployment bugs and to test whether the new release adversely effects customer workloads. With existing test generation and deployment techniques, users can't choose (nor validate) compatible portions of new versions and retain their previous version's functionality. We present two new technologies to alleviate this friction. First, Test Generation for Ad Hoc Circumstances transforms buggy executions into test cases. Second, Binary Patch Decomposition allows users to select the compatible pieces of update releases. By sharing specific context around buggy behavior and developers can create specific test cases that demonstrate if their fixes are appropriate. When fixes are distributed by including extra context users can incorporate only updates that guarantee compatibility between buggy and fixed versions. We use change analysis in combination with binary rewriting to transform the old executable and buggy execution into a test case including the developer's prospective changes that let us generate and run targeted tests for the candidate patch. We also provide analogous support to users, to selectively validate and patch their production environments with only the desired bug-fixes from new version releases. This paper presents a new patching workflow that allows developers to validate prospective patches and users to select which updates they would like to apply, along with two new technologies that make it possible. We demonstrate our technique constructs tests cases more effectively and more efficiently than traditional test case generation on a collection of real world bugs compared to traditional test generation techniques, and provides the ability for flexible updates in real world scenarios. 
    more » « less
  2. null (Ed.)
    Timing side channels arise in software when a program's execution time can be correlated with security-sensitive program input. Recent results on software side-channel detection focus on analysis of program's source code. However, runtime behavior, in particular optimizations introduced during just-in-time (JIT) compilation, can impact or even introduce timing side channels in programs. In this paper, we present a technique for automatically detecting such JIT-induced timing side channels in Java programs. We first introduce patterns to detect partitions of secret input potentially separable by side channels. Then we present an automated approach for exploring behaviors of the Java Virtual Machine (JVM) to identify states where timing channels separating these partitions arise. We evaluate our technique on three datasets used in recent work on side-channel detection. We find that many code variants labeled "safe" with respect to side-channel vulnerabilities are in fact vulnerable to JIT-induced timing side channels. Our results directly contradict the conclusions of four separate state-of-the-art program analysis tools for side-channel detection and demonstrate that JIT-induced side channels are prevalent and can be detected automatically. 
    more » « less
  3. Static analysis tools have demonstrated effectiveness at finding bugs in real world code. Such tools are increasingly widely adopted to improve software quality in practice. Automated Program Repair (APR) has the potential to further cut down on the cost of improving software quality. However, there is a disconnect between these effective bug-finding tools and APR. Recent advances in APR rely on test cases, making them inapplicable to newly discovered bugs or bugs difficult to test for deterministically (like memory leaks). Additionally, the quality of patches generated to satisfy a test suite is a key challenge. We address these challenges by adapting advances in practical static analysis and verification techniques to enable a new technique that finds and then accurately fixes real bugs without test cases. We present a new automated program repair technique using Separation Logic. At a high-level, our technique reasons over semantic effects of existing program fragments to fix faults related to general pointer safety properties: resource leaks, memory leaks, and null dereferences. The procedure automatically translates identified fragments into source-level patches, and verifies patch correctness with respect to reported faults. In this work we conduct the largest study of automatically fixing undiscovered bugs in real-world code to date. We demonstrate our approach by correctly fixing 55 bugs, including 11 previously undiscovered bugs, in 11 real-world projects. 
    more » « less
  4. Free and/or open-source software (or F/OSS) projects now play a major and dominant role in society, constituting critical digital infrastructure relied upon by companies, academics, non-profits, activists, and more. As F/OSS has become larger and more established, we investigate the labor of maintaining and sustaining those projects at various scales. We report findings from an interview-based study with contributors and maintainers working in a wide range of F/OSS projects. Maintainers of F/OSS projects do not just maintain software code in a more traditional software engineering understanding of the term: fixing bugs, patching security vulnerabilities, and updating dependencies. F/OSS maintainers also perform complex and often-invisible interpersonal and organizational work to keep their projects operating as active communities of users and contributors. We particularly focus on how this labor of maintaining and sustaining changes as projects and their software grow and scale across many dimensions. In understanding F/OSS to be as much about maintaining a communal project as it is maintaining software code, we discuss broadly applicable considerations for peer production communities and other socio-technical systems more broadly. 
    more » « less
  5. null (Ed.)
    A software update is a critical but complicated part of software security. Its delay poses risks due to vulnerabilities and defects of software. Despite the high demand to shorten the update lag and keep the software up-to-date, software updates involve factors such as human behavior, program configurations, and system policies, adding variety in the updates of software. Investigating these factors in a real environment poses significant challenges such as the knowledge of software release schedules from the software vendors and the deployment times of programs in each user’s machine. Obtaining software release plans requires information from vendors which is not typically available to public. On the users’ side, tracking each software’s exact update installation is required to determine the accurate update delay. Currently, a scalable and systematic approach is missing to analyze these two sides’ views of a comprehensive set of software. We performed a long term system-wide study of update behavior for all software running in an enterprise by translating the operating system logs from enterprise machines into graphs of binary executable updates showing their complex, and individualized updates in the environment. Our comparative analysis locates risky machines and software with belated or dormant updates falling behind others within an enterprise without relying on any third-party or domain knowledge, providing new observations and opportunities for improvement of software updates. Our evaluation analyzes real data from 113,675 unique programs used by 774 computers over 3 years. 
    more » « less