null
(Ed.)
Graph-based namespaces are being increasingly used to represent the organization of complex and ever-growing information eco-systems and individual user roles. Timely and accurate information dissemination requires an architecture with appropriate naming frameworks, adaptable to changing roles, focused on content rather than network addresses. Today's complex information organization structures make such dissemination very challenging. To address this, we propose POISE, a name-based publish/subscribe architecture for efficient topic-based and recipient-based content dissemination. POISE proposes an information layer, improving on state-of-the-art Information-Centric Networking solutions in two major ways: 1) support for complex graph-based namespaces, and 2) automatic name-based load-splitting. POISE supports in-network graph-based naming, leveraged in a dissemination protocol which exploits information layer rendezvous points (RPs) that perform name expansions. For improved robustness and scalability, POISE supports adaptive load-sharing via multiple RPs, each managing a dynamically chosen subset of the namespace graph. Excessive workload may cause one RP to turn into a ``hot spot'', impeding performance and reliability. To eliminate such traffic concentration, we propose an automated load-splitting mechanism, consisting of an enhanced, namespace graph partitioning complemented by a seamless, loss-less core migration procedure. Due to the nature of our graph partitioning and its complex objectives, off-the-shelf graph partitioning, e.g., METIS, is inadequate. We propose a hybrid, iterative bi-partitioning solution, consisting of an initial and a refinement phase. We also implemented POISE on a DPDK-based platform. Using the important application of emergency response, our experimental results show that POISE outperforms state-of-the-art solutions, demonstrating its effectiveness in timely delivery and load-sharing.
more »
« less