- Award ID(s):
- 1711253
- PAR ID:
- 10191250
- Date Published:
- Journal Name:
- Dalton Transactions
- Volume:
- 48
- Issue:
- 3
- ISSN:
- 1477-9226
- Page Range / eLocation ID:
- 898 to 907
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Determination of the surface hydrophobicity or wettability of nanomaterials and nanoparticles (NPs) is often challenged by the heterogeneous properties of NPs that vary with particle size, shape, surface charge, aggregation states, and surface sorption or coating. This study first summarized inherent limitations of the water contact angle, octanol–water partition coefficient ( K ow ) and surface adsorption of probe molecules in probing nanomaterial hydrophobicity. Then, we demonstrated the principle of a scanning probe method based on atomic force microscopy (AFM) for the local surface hydrophobicity measurement. Specifically, we measured the adhesion forces between functionalized AFM tips and self-assembled monolayers (SAMs) to establish a linear relationship between the adhesion forces and water contact angles based on the continuum thermodynamic approach (CTA). This relationship was used to determine the local surface hydrophobicity of seven different NPs ( i.e. , TiO 2 , ZnO, SiO 2 , CuO, CeO 2 , α-Fe 2 O 3 , and Ag), which agreed well with bulk contact angles of these NPs. Some discrepancies were observed for Fe 2 O 3 , CeO 2 and SiO 2 NPs, probably because of surface hydration and roughness effects. Moreover, the solution pH and ionic strength had negligible effects on the adhesion forces between the AFM tip and MWCNTs or C 60 , indicating that the hydrophobicity of carbonaceous nanomaterials is not influenced by pH or ionic strength (IS). By contrast, natural organic matter (NOM) appreciably decreased the hydrophobicity of MWCNTs and C 60 due to surface coating of hydrophilic NOM. This scanning probe method has been proved to be reliable and robust toward the accurate measurement of the nanoscale hydrophobicity of individual NPs or nanomaterials in liquid environments.more » « less
-
Abstract In the carbon nanotubes film/graphene heterostructure decorated with catalytic Pt nanoparticles using atomic layer deposition (Pt-NPs/CNTs/Gr) H 2 sensors, the CNT film determines the effective sensing area and the signal transport to Gr channel. The former requires a large CNT aspect ratio for a higher sensing area while the latter demands high electric conductivity for efficient charge transport. Considering the CNT’s aspect ratio decreases, while its conductivity increases ( i.e. , bandgap decreases), with the CNT diameter, it is important to understand how quantitatively these effects impact the performance of the Pt-NPs/CNTs/Gr nanohybrids sensors. Motivated by this, this work presents a systematic study of the Pt-NPs/CNTs/Gr H 2 sensor performance with the CNT films made from different constituent CNTs of diameters ranging from 1 nm for single-wall CNTs, to 2 nm for double-wall CNTs, and to 10–30 nm for multi-wall CNTs (MWCNTs). By measuring the morphology and electric conductivity of SWCNT, DWCNT and MWCNT films, this work aims to reveal the quantitative correlation between the sensor performance and relevant CNT properties. Interestingly, the best performance is obtained on Pt-NPs/MWCNTs/Gr H 2 sensors, which can be attributed to the compromise of the effective sensing area and electric conductivity on MWCNT films and illustrates the importance of optimizing sensor design.more » « less
-
Nanoscale oxide-based negative electrodes are of great interest for lithium ion batteries due to their high energy density, power density and enhanced safety. In this work, we conducted a case study on mesoporous TiO 2 nanoparticle negative electrodes with uniform size and varying crystallinity in order to investigate the trend in the electrochemical properties of oxide-based nanoscale negative electrodes with varying crystallinity. Mesoporous solid spherical TiO 2 nanoparticles with a uniform particle size and varying crystallinity, i.e. , amorphous TiO 2 (A-TiO 2 ), partially crystalline TiO 2 (PC-TiO 2 ) and fully crystalline TiO 2 (FC-TiO 2 ) nanoparticles were studied. At low current rate (quasi steady-state), the specific capacity of the samples drops with the decrease of crystallinity. Ex situ synchrotron pair distribution function analysis reveals that the 1D zigzag Li ion diffusion pathway becomes expanded with the increase of crystallinity, which promotes ion mobility and charge storage. At high current rates (away from equilibrium states), however, the A-TiO 2 sample demonstrates slightly larger capacity than the FC-TiO 2 sample, both of which show larger capacities than that of the PC-TiO 2 sample. Both A-TiO 2 and FC-TiO 2 samples exhibit higher capacitive contribution to the charge storage and larger Li + diffusivity than those of the PC-TiO 2 sample, which explains their better rate capability. Moreover, the larger Li + diffusivity of the A-TiO 2 sample leads to the slightly larger specific capacity than the FC-TiO 2 sample at the highest current rate.more » « less
-
Abstract Ion‐insertion capacitors show promise to bridge the gap between supercapacitors of high power densities and batteries of high energy densities. While research efforts have primarily focused on Li+‐based capacitors (LICs), Na+‐based capacitors (SICs) are theoretically cheaper and more sustainable. Owing to the larger size of Na+compared to Li+, finding high‐rate anode materials for SICs has been challenging. Herein, an SIC anode architecture is reported consisting of TiO2nanoparticles anchored on a sheared‐carbon nanotubes backbone (TiO2/SCNT). The SCNT architecture provides advantages over other carbon architectures commonly used, such as reduced graphene oxide and CNT. In a half‐cell, the TiO2/SCNT electrode shows a capacity of 267 mAh g−1at a 1 C charge/discharge rate and a capacity of 136 mAh g−1at 10 C while maintaining 87% of initial capacity over 1000 cycles. When combined with activated carbon (AC) in a full cell, an energy density and power density of 54.9 Wh kg−1and 1410 W kg−1, respectively, are achieved while retaining a 90% capacity retention over 5000 cycles. The favorable rate capability, energy and power density, and durability of the electrode is attributed to the enhanced electronic and Na+conductivity of the TiO2/SCNT architecture.
-
Abstract A mesoporous TiO2−
x material comprised of small, crystalline, vacancy‐rich anatase nanoparticles (NPs) shows unique optical, thermal, and electronic properties. It is synthesized using polymer‐derived mesoporous carbon (PDMC) as a template. The PDMC pores serve as physical barriers during the condensation and pyrolysis of a titania precursor, preventing the titania NPs from growing beyond 10 nm in size. Unlike most titania nanomaterials, during pyrolysis the NPs undergo no transition from the anatase to rutile phase and they become catalytically active reduced TiO2−x . When exposed to a slow electron beam, the NPs exhibit a charge/discharge behavior, lighting up and fading away for an average period of 15 s for an extended period of time. The NPs also show a 50 nm red‐shift in their UV/Vis absorption and long‐lived charge carriers (electrons and holes) at room temperature in the dark, even long after UV irradiation. The NPs as photocatalysts show a good activity for CO2reduction.