skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Human-like Time Series Summaries via Trend Utility Estimation
In many scenarios, humans prefer a text-based representation of quantitative data over numerical, tabular, or graphical representations. The attractiveness of textual summaries for complex data has inspired research on data-to-text systems. While there are several data-to-text tools for time series, few of them try to mimic how humans summarize for time series. In this paper, we propose a model to create human-like text descriptions for time series. Our system finds patterns in time series data and ranks these patterns based on empirical observations of human behavior using utility estimation. Our proposed utility estimation model is a Bayesian network capturing interdependencies between different patterns. We describe the learning steps for this network and introduce baselines along with their performance for each step. The output of our system is a natural language description of time series that attempts to match a human's summary of the same data.  more » « less
Award ID(s):
1937153
PAR ID:
10192066
Author(s) / Creator(s):
Date Published:
Journal Name:
Ninth International Workshop on Statistical Relational AI
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Reinforcement learning (RL) presents numerous benefits compared to rule-based approaches in various applications. Privacy concerns have grown with the widespread use of RL trained with privacy- sensitive data in IoT devices, especially for human-in-the-loop systems. On the one hand, RL methods enhance the user experience by trying to adapt to the highly dynamic nature of humans. On the other hand, trained policies can leak the user’s private information. Recent attention has been drawn to designing privacy-aware RL algorithms while maintaining an acceptable system utility. A central challenge in designing privacy-aware RL, especially for human-in-the-loop systems, is that humans have intrinsic variability, and their preferences and behavior evolve. The effect of one privacy leak mitigation can differ for the same human or across different humans over time. Hence, we can not design one fixed model for privacy-aware RL that fits all. To that end, we propose adaPARL, an adaptive approach for privacy-aware RL, especially for human-in-the-loop IoT systems. adaPARL provides a personalized privacy-utility trade-off depend- ing on human behavior and preference. We validate the proposed adaPARL on two IoT applications, namely (i) Human-in-the-Loop Smart Home and (ii) Human-in-the-Loop Virtual Reality (VR) Smart Classroom. Results obtained on these two applications validate the generality of adaPARL and its ability to provide a personalized privacy-utility trade-off. On average, adaPARL improves the utility by 57% while reducing the privacy leak by 23% on average. 
    more » « less
  2. Data from the cellular network have been proved as one of the most promising way to understand large-scale human mobility for various ubiquitous computing applications due to the high penetration of cellphones and low collection cost. Existing mobility models driven by cellular network data suffer from sparse spatial-temporal observations because user locations are recorded with cellphone activities, e.g., calls, text, or internet access. In this paper, we design a human mobility recovery system called CellSense to take the sparse cellular billing data (CBR) as input and outputs dense continuous records to recover the sensing gap when using cellular networks as sensing systems to sense the human mobility. There is limited work on this kind of recovery systems at large scale because even though it is straightforward to design a recovery system based on regression models, it is very challenging to evaluate these models at large scale due to the lack of the ground truth data. In this paper, we explore a new opportunity based on the upgrade of cellular infrastructures to obtain cellular network signaling data as the ground truth data, which log the interaction between cellphones and cellular towers at signal levels (e.g., attaching, detaching, paging) even without billable activities. Based on the signaling data, we design a system CellSense for human mobility recovery by integrating collective mobility patterns with individual mobility modeling, which achieves the 35.3% improvement over the state-of-the-art models. The key application of our recovery model is to take regular sparse CBR data that a researcher already has, and to recover the missing data due to sensing gaps of CBR data to produce a dense cellular data for them to train a machine learning model for their use cases, e.g., next location prediction. 
    more » « less
  3. Urban anomalies have a large impact on passengers' travel behavior and city infrastructures, which can cause uncertainty on travel time estimation. Understanding the impact of urban anomalies on travel time is of great value for various applications such as urban planning, human mobility studies and navigation systems. Most existing studies on travel time have been focused on the total riding time between two locations on an individual transportation modality. However, passengers often take different modes of transportation, e.g., taxis, subways, buses or private vehicles, and a significant portion of the travel time is spent in the uncertain waiting. In this paper, we study the fine-grained travel time patterns in multiple transportation systems under the impact of urban anomalies. Specifically, (i) we investigate implicit components, including waiting and riding time, in multiple transportation systems; (ii) we measure the impact of real-world anomalies on travel time components; (iii) we design a learning-based model for travel time component prediction with anomalies. Different from existing studies, we implement and evaluate our measurement framework on multiple data sources including four city-scale transportation systems, which are (i) a 14-thousand taxicab network, (ii) a 13-thousand bus network, (iii) a 10-thousand private vehicle network, and (iv) an automatic fare collection system for a public transit network (i.e., subway and bus) with 5 million smart cards. 
    more » « less
  4. Mining spatiotemporal mobility patterns is crucial for optimizing urban planning, enhancing transportation systems, and improving public safety by providing useful insights into human movement and behavior over space and time. As an unsupervised learning technique, time series clustering has gained considerable attention due to its efficiency. However, the existing literature has often overlooked the inherent characteristics of mobility data, including high-dimensionality, noise, outliers, and time distortions. This oversight can lead to potentially large computational costs and inaccurate patterns. To address these challenges, this paper proposes a novel neural network-based method integrating temporal autoencoder and dynamic time warping-based K-means clustering algorithm to mutually promote each other for mining spatiotemporal mobility patterns. Comparative results showed that our proposed method outperformed several time series clustering techniques in accurately identifying mobility patterns on both synthetic and real-world data, which provides a reliable foundation for data-driven decision-making. Furthermore, we applied the method to monthly county-level mobility data during the COVID-19 pandemic in the U.S., revealing significant differences in mobility changes between rural and urban areas, as well as the impact of public response and health considerations on mobility patterns. 
    more » « less
  5. Extensive literature exists studying decentralized coordination and consensus, with considerable attention devoted to ensuring robustness to faults and attacks. However, most of the latter literature assumes that non-malicious agents follow simple stylized rules. In reality, decentralized protocols often involve humans, and understanding how people coordinate in adversarial settings is an open problem. We initiate a study of this problem, starting with a human subjects investigation of human coordination on networks in the presence of adversarial agents, and subsequently using the resulting data to bootstrap the development of a credible agent-based model of adversarial decentralized coordination. In human subjects experiments, we observe that while adversarial nodes can successfully prevent consensus, the ability to communicate can significantly improve robustness, with the impact particularly significant in scale-free networks. On the other hand, and contrary to typical stylized models of behavior, we show that the existence of trusted nodes has limited utility. Next, we use the data collected in human subject experiments to develop a data-driven agent-based model of adversarial coordination. We show that this model successfully reproduces observed behavior in experiments, is robust to small errors in individual agent models, and illustrate its utility by using it to explore the impact of optimizing network location of trusted and adversarial nodes. 
    more » « less