skip to main content


Title: CellSense: Human Mobility Recovery via Cellular Network Data Enhancement
Data from the cellular network have been proved as one of the most promising way to understand large-scale human mobility for various ubiquitous computing applications due to the high penetration of cellphones and low collection cost. Existing mobility models driven by cellular network data suffer from sparse spatial-temporal observations because user locations are recorded with cellphone activities, e.g., calls, text, or internet access. In this paper, we design a human mobility recovery system called CellSense to take the sparse cellular billing data (CBR) as input and outputs dense continuous records to recover the sensing gap when using cellular networks as sensing systems to sense the human mobility. There is limited work on this kind of recovery systems at large scale because even though it is straightforward to design a recovery system based on regression models, it is very challenging to evaluate these models at large scale due to the lack of the ground truth data. In this paper, we explore a new opportunity based on the upgrade of cellular infrastructures to obtain cellular network signaling data as the ground truth data, which log the interaction between cellphones and cellular towers at signal levels (e.g., attaching, detaching, paging) even without billable activities. Based on the signaling data, we design a system CellSense for human mobility recovery by integrating collective mobility patterns with individual mobility modeling, which achieves the 35.3% improvement over the state-of-the-art models. The key application of our recovery model is to take regular sparse CBR data that a researcher already has, and to recover the missing data due to sensing gaps of CBR data to produce a dense cellular data for them to train a machine learning model for their use cases, e.g., next location prediction.  more » « less
Award ID(s):
1849238 2047822 1951890 1952096 2003874 1932223
NSF-PAR ID:
10436083
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
Volume:
5
Issue:
3
ISSN:
2474-9567
Page Range / eLocation ID:
1 to 22
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Accurate and up-to-date digital road maps are the foundation of many mobile applications, such as navigation and autonomous driving. A manually-created map suffers from the high cost for creation and maintenance due to constant road network updating. Recently, the ubiquity of GPS devices in vehicular systems has led to an unprecedented amount of vehicle sensing data for map inference. Unfortunately, accurate map inference based on vehicle GPS is challenging for two reasons. First, it is challenging to infer complete road structures due to the sensing deviation, sparse coverage, and low sampling rate of GPS of a fleet of vehicles with similar mobility patterns, e.g., taxis. Second, a road map requires various road properties such as road categories, which is challenging to be inferred by just GPS locations of vehicles. In this paper, we design a map inference system called coMap by considering multiple fleets of vehicles with Complementary Mobility Features. coMap has two key components: a graph-based map sketching component, a learning-based map painting component. We implement coMap with the data from four type-aware vehicular sensing systems in one city, which consists of 18 thousand taxis, 10 thousand private vehicles, 6 thousand trucks, and 14 thousand buses. We conduct a comprehensive evaluation of coMap with two state-of-the-art baselines along with ground truth based on OpenStreetMap and a commercial map provider, i.e., Baidu Maps. The results show that (i) for the map sketching, our work improves the performance by 15.9%; (ii) for the map painting, our work achieves 74.58% of average accuracy on road category classification. 
    more » « less
  2. With the rapid growth of online social media and ubiquitous Internet connectivity, social sensing has emerged as a new crowdsourcing application paradigm of collecting observations (often called claims) about the physical environment from humans or devices on their behalf. A fundamental problem in social sensing applications lies in effectively ascertaining the correctness of claims and the reliability of data sources without knowing either of them a priori, which is referred to as truth discovery. While significant progress has been made to solve the truth discovery problem, some important challenges have not been well addressed yet. First, existing truth discovery solutions did not fully solve the dynamic truth discovery problem where the ground truth of claims changes over time. Second, many current solutions are not scalable to large-scale social sensing events because of the centralized nature of their truth discovery algorithms. Third, the heterogeneity and unpredictability of the social sensing data traffic pose additional challenges to the resource allocation and system responsiveness. In this paper, we developed a Scalable Streaming Truth Discovery (SSTD) solution to address the above challenges. In particular, we first developed a dynamic truth discovery scheme based on Hidden Markov Models (HMM) to effectively infer the evolving truth of reported claims. We further developed a distributed framework to imple- ment the dynamic truth discovery scheme using Work Queue in HTCondor system. We also integrated the SSTD scheme with an optimal workload allocation mechanism to dynamically allocate the resources (e.g., cores, memories) to the truth discovery tasks based on their computation requirements. We evaluated SSTD through real world social sensing applications using Twitter data feeds. The evaluation results on three real-world data traces (i.e., Boston Bombing, Paris Shooting and College Football) show that the SSTD scheme is scalable and outperforms the state-of-the- art truth discovery methods in terms of both effectiveness and efficiency. 
    more » « less
  3. Cancer has been one of the most significant and critical challenges in the field of medicine. It is a leading cause of death both in the United States and worldwide. Common cancer treatments such as radiation and chemotherapy can be effective in destroying cancerous tissue but cause many detrimental side effects. Thus, recent years have seen new treatment methods that do not harm healthy tissue, including immunotherapy. Adoptive cell therapy (ACT) is one form of immunotherapy in which patients’ immune cells are modified to target cancer cells and then reintroduced into the body. ACT is promising, but most current treatments are inefficient and costly. Widespread implementation of ACT has been a difficult task due to the high treatment cost and inefficient methods currently used to expand the cells. Additionally, if the manufacturing process is not carefully controlled, it can result in the cells losing their cancer-killing ability after expansion. To address the need for an economically feasible culture process to expand immune cells for immunotherapy, our laboratory has designed a centrifugal bioreactor (CBR) expansion system. The CBR uses a balance of centrifugal forces and fluid forces, as shown in Figure 1, to quickly expand infected CD8+ T-cells from a bovine model up to high population densities. With other applications, the CBR has achieved cell densities as high as 1.8 x 108 cells/mL over 7 days in an 11.4-mL chamber. For this study, our goal is to begin validating the CBR by optimizing the growth of CEM (human lymphoblastic leukemia) cells, which are similar cell to cytotoxic T lymphocytes (CTLs). This can be accomplished by measuring kinetic growth parameters based on the concentrations of glucose and inhibitory metabolites in the culture. We hypothesize that by designing a kinetic model from static culture experiments, we can predict the parameters necessary to achieve peak CEM and eventually CTL growth in the CBR. We will report on kinetic growth studies in which different glucose concentrations are tested, and a maximum specific growth rate and Monod constant determined, as well as studies where varying levels of the inhibitory growth byproducts, lactate and ammonium, are added to the culture and critical inhibitor concentrations are determined. Another recent conceptual development for the design of the CBR is a real-time monitoring and feedback control system to regulate the cellular environment, based on levels of surface co-receptors and mRNA signaling within the culture. Prior studies have pinpointed T cell exhaustion as a significant issue in achieving successful immunotherapy, particularly in treatments for solid tumors; T cell exhaustion occurs during a period of chronic antigen stimulation when the cells lose their ability to target and kill cancer cells, currently theorized to be associated with particular inhibitory receptors and cytokines in the immune system. Designing a system with a fiber optic sensor that can monitor the cell state and use feedback control to regulate the pathways involved in producing these receptors will ensure the cells maintain cytotoxic properties during the expansion process within a Centrifugal Fluidized Expansion we call the CentriFLEX. In this presentation, we will also report on early results from development of this exhaustion monitoring system. In brief, achieving optimal kinetic models for the CBR system and methods to prevent T cell exhaustion has the potential to significantly enhance culture efficiency and availability of immunotherapy treatments. 
    more » « less
  4. With the trend of vehicles becoming increasingly connected and potentially autonomous, vehicles are being equipped with rich sensing and communication devices. Various vehicular services based on shared real-time sensor data of vehicles from a fleet have been proposed to improve the urban efficiency, e.g., HD-live map, and traffic accident recovery. However, due to the high cost of data uploading (e.g., monthly fees for a cellular network), it would be impractical to make all well-equipped vehicles to upload real-time sensor data constantly. To better utilize these limited uploading resources and achieve an optimal road segment sensing coverage, we present a real-time sensing task scheduling framework, i.e., RISC, for Resource-Constraint modeling for urban sensing by scheduling sensing tasks of commercial vehicles with sensors based on the predictability of vehicles' mobility patterns. In particular, we utilize the commercial vehicles, including taxicabs, buses, and logistics trucks as mobile sensors to sense urban phenomena, e.g., traffic, by using the equipped vehicular sensors, e.g., dash-cam, lidar, automotive radar, etc. We implement RISC on a Chinese city Shenzhen with one-month real-world data from (i) a taxi fleet with 14 thousand vehicles; (ii) a bus fleet with 13 thousand vehicles; (iii) a truck fleet with 4 thousand vehicles. Further, we design an application, i.e., track suspect vehicles (e.g., hit-and-run vehicles), to evaluate the performance of RISC on the urban sensing aspect based on the data from a regular vehicle (i.e., personal car) fleet with 11 thousand vehicles. The evaluation results show that compared to the state-of-the-art solutions, we improved sensing coverage (i.e., the number of road segments covered by sensing vehicles) by 10% on average. 
    more » « less
  5. This paper presents a portable inertial measurement unit (IMU)-based motion sensing system and proposed an adaptive gait phase detection approach for non-steady state walking and multiple activities (walking, running, stair ascent, stair descent, squat) monitoring. The algorithm aims to overcome the limitation of existing gait detection methods that are time-domain thresholding based for steady-state motion and are not versatile to detect gait during different activities or different gait patterns of the same activity. The portable sensing suit is composed of three IMU sensors (wearable sensors for gait phase detection) and two footswitches (ground truth measurement and not needed for gait detection of the proposed algorithm). The acceleration, angular velocity, Euler angle, resultant acceleration, and resultant angular velocity from three IMUs are used as the input training data and the data of two footswitches used as the training label data (single support, double support, swing phase). Three methods 1) Logistic Regression (LR), 2) Random Forest Classifier (RF), and 3) Artificial Neural Network (NN) are used to build the gait phase detection models. The result shows our proposed gait phase detection with Random Forest Classifier can achieve 98.94% accuracy in walking, 98.45% in running, 99.15% in stair-ascent, 99.00% in stair-descent, and 99.63% in squatting. It demonstrates that our sensing suit can not only detect the gait status in any transient state but also generalize to multiple activities. Therefore, it can be implemented in real-time monitoring of human gait and control of assistive devices. 
    more » « less